
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2012

Modernizing the core quantum chemistry
algorithms
Andrey Asadchev
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons, and the Physical Chemistry Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Asadchev, Andrey, "Modernizing the core quantum chemistry algorithms" (2012). Graduate Theses and Dissertations. 12915.
https://lib.dr.iastate.edu/etd/12915

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12915&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12915&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F12915&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/139?utm_source=lib.dr.iastate.edu%2Fetd%2F12915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12915?utm_source=lib.dr.iastate.edu%2Fetd%2F12915&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Modernizing the core quantum chemistry algorithms

by

Andrey Asadchev

A dissertation submitted to committee members

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Physical Chemistry

Program of Study Committee:

Mark S. Gordon, Major Professor

Theresa Windus

Brett Bode

Xueyu Song

Phillip Jones

Iowa State University

Ames, Iowa

2012

 Copyright © Andrey Asadchev, 2012. All rights reserved

www.manaraa.com

Table of Contents

Chapter 1. Introduction .. 1

1. Hartree-Fock .. 4

2. Basis Set ... 8

3. Electron Correlation ... 10

References .. 12

Chapter 2. New Multithreaded Hybrid CPU/GPU Approach to Hartree-Fock 16

Abstract .. 16

1. Introduction .. 16

2. Rys Quadrature Implementation .. 17

3. Fock Matrix Construction Implementation .. 24

4. C++ Implementation Details .. 30

5. GPU Implementation ... 31

6. Performance ... 38

7. Conclusions .. 44

References .. 45

Chapter 3. A New Algorithm for Second Order Perturbation Theory 48

Abstract .. 48

1. Introduction .. 48

2. Matrix chaining .. 50

3. General Algorithm Considerations .. 52

4. Naive Approach ... 53

5. Better Algorithm .. 55

6. Performance ... 58

7. GPU Implementation ... 62

8. Conclusions .. 63

References .. 63

Chapter 4. A Novel Approach to CCSD(T) ... 65

Abstract .. 66

1. Introduction .. 66

2. Computational details .. 69

3. Design of a Scalable and Efficient Algorithm ... 70

4. Implementation .. 73

5. Performance ... 81

5. Conclusions .. 84

References .. 84

www.manaraa.com

Chapter 5. Conclusions ... 87

www.manaraa.com

1

Chapter 1. Introduction

The primary goal of computational chemistry is of course to predict chemical properties:

energy, gradients, Hessians (vibrational frequencies), and other properties for a given

chemical system. For example, to find the excitation energy or rotation barriers one

would perform a series of single point energy calculations. To find local extrema on the

potential energy surface a series of energy gradient calculations are needed.

The computational science aspect of computational chemistry is often treated as a

necessary evil. Over the years, most of the designers and authors of quantum chemistry

algorithms and their implementations were chemists and physicists first, and

computational scientists second.

The foundations for quantum chemistry were developed before World War II. For

example the Hartree-Fock [1,2] method was developed in the late 20’s, and the

foundation of perturbation theory [3] dates back to the mid 30’s. However, practical

application of the theoretical methods did not come until the emergence of sufficient

computing resources to crunch the numbers.

20th century scientific computing was dominated by Fortran, short for Formula

Translator, one of the earliest programming languages, first developed in the 50’s [4]. The

computers and operating systems at the inception of Fortran were expensive proprietary

products, batch machines running stacks of manually prepared inputs. Compared to

today’s powerful computers, computing in the 50’s and the 60’s may as well have been

done on clay tablets.

In the 70’s another language, C [5], and a new operating system, UNIX, came out of Bell

Labs. With the rise of UNIX, the C programming language gained strong footing among

computer science and computer engineering practitioners. In the same decade Cray

produced its first groundbreaking supercomputer, Cray I, which gave researchers for the

first time, the ability to crack tough numerical problems, such as weather prediction, in a

timely manner. In the field of computational chemistry many of the core programs (some

still in use today) were developed and incorporated into computational chemistry

www.manaraa.com

2

packages, notably HONDO [6] and GAUSSIAN [7]. A majority of this work was

spearheaded by John Pople, who won the 1998 Nobel Prize for his contribution to the

field.

The 80’s saw the growth of UNIX and standardization of system interfaces with POSIX

and SystemV [8] standards. C++ [9], a multi-paradigm language based on C, was being

developed by Bjarne Stroustrup at Bell Labs. To avoid limitations placed on software by

patents and restrictive licensing, Richard Stallman began the GNU foundation, which

sought to liberate software development. The GNU Compilers Collection (GCC) and

GNU public licenses are perhaps the most visible of the many contributions GNU made

to computing and scientific fields. The decade also witnessed the birth of massively

parallel supercomputers, such as the Thinking Machines. To take advantage of the

emerging trends in scientific computing, a number of parallel computational chemistry

algorithms were developed, including parallel Hartree-Fock [10] and second order

perturbation theory (MP2) [11]. In the early 80’s Purvis and Bartlett first implemented a

coupled cluster singles and doubles algorithm [12], or CCSD for short. Subsequently,

CCSD with a perturbative triples correction method [13], CCSD(T), was developed

which today is the gold standard of computational chemistry. In the same decade,

GAMESS [14] began to be developed, with HONDO as much of its initial codebase.

In the 90’s, the exotic supercomputers of the previous decades slowly disappeared,

starved from the generous military budgets of the Cold War which was now over [15,16].

The burgeoning personal computer market funneled billions of dollars into research and

development of commodity Intel and AMD processors. The fragmented UNIX market

was slowly eroded by the ever maturing Microsoft Windows and a new operating system,

Linux. Started as a hobby in the early 90’s by Linus Torvalds, Linux, released under a

GNU Public License, quickly caught the interest of programmers worldwide and within a

few years became one of the major operating systems of the Internet age. The C++

programming language became the preferred choice for writing complex applications,

albeit not just yet in scientific fields. However, more and more scientific codes of the 90’s

were run and developed for clusters of commodity computers running Linux and

connected by relatively inexpensive networks. One of the more interesting developments

in computational chemistry was NWChem [17], a set of codes designed specifically with

www.manaraa.com

3

parallel distributed memory systems in mind. NWChem was perhaps the last major

computational chemistry package whose development started primarily in Fortran.

The Internet bubble burst at the turn of the 21st century, spelling financial problems and

consequent death to the many flagship companies of the last century, including SUN and

SGI. With the release of X86-64 extensions by AMD in 2003, commodity processors

became a full-fledged 64-bit architecture, suitable for any computational challenge. By

the 2010’s the processor market became dominated almost exclusively by multicore

AMD and Intel chips, with IBM still retaining some presence in the high-end computing

market with its Power processors. The latest development in the commodity computing is

the reemergence of accelerators, such as using graphics cards to solve general programs,

so-called General Processing on GPU (GPGPU). The leader in the field has been

NVIDIA with its CUDA [18] technology, but recently Intel joined the market with its

Many Integrated Cores (MIC) technology [18]. The efforts to unify development across

regular microprocessors and various accelerators led to OpenCL [18], a set of open

standards for developing applications that run across heterogeneous platforms.

The software development in scientific communities has steadily shifted towards C/C++.

While there is still a lot of legacy code written in Fortran (and hence continuing

development), much of the new development happens in C++ and Python [19]. Examples

are Q-Chem [20], with most of its new development happening in C++, and Psi4 [21],

almost entirely implemented in C++ with Python used as a scripting engine. The C++

language and compilers continue to evolve and improve at a faster pace than Fortran,

mostly due to the influence of the much larger commercial application development

market. In terms of raw speed, the C++ programs are as fast as their Fortran counterparts,

but C++ has the advantage of modern programming techniques and many libraries and

frameworks, e.g. Boost [22].

So, what does the contemporary scientific computing platform look like now? It is almost

always a distributed memory cluster of very fast multicore computers, with between 2 and

64 GB of memory per node. Some clusters might have GPU accelerators to augment the

computational power. The number of cores in the cluster varies greatly, from just a few to

tens of thousands. The interconnect can be 1Gb Ethernet, InfiniBand, of a proprietary

www.manaraa.com

4

network, such as SeaStar on Cray supercomputers. The file system can be a local disk or a

parallel file system capable of storing terabytes of data.

Ultimately, it is the hardware (or rather the hardware limitations) that dictates how the

algorithm is to be designed. Until we have infinite memory and bandwidth, the algorithms

will always have to be designed with these limitations in mind. Furthermore, the

algorithms have to be designed so as to account for a great variety of system

configurations. A few general rules of thumb can be used as general guidelines for

designing scalable and efficient algorithms: minimize communication, keep memory

footprint low and introduce adjustable parameters for memory use, use external libraries,

e.g. Linear Algebra Package [23] (LAPACK), and make software easy to modify, extend,

and even rewrite, perhaps by using one certain programming language over another.

Furthermore, how will the scientific computing landscape look in the future? Who

knows! But the software must be designed so that changes dictated by the hardware can

be accommodated efficiently.

In the following chapters are attempts to develop a modern, but simple and flexible, C++

foundation for computational chemistry algorithms and several algorithm

implementations built upon that foundation with the above rules of thumb in mind.

But before one can get into the intertwined details of science, algorithms, and hardware

some theoretical background is necessary to explain to the reader in broad detail the basis

sets, two-electron integrals, and transformations which will form the bulk of the

subsequent pages.

1. Hartree-Fock

At the center of computational chemistry is the evaluation of the time-independent

Schrödinger equation eigenvalue problem,

 H E

where H is the Hamiltonian operator, is the wavefunction containing all of the

relevant information about the chemical system, E is the energy of the system and

eigenvalue of the Hamiltonian. To be a proper wavefunction, must be square

integrable and normalized, 1< > , and antisymmetric to satisfy the Pauli exclusion

requirement for fermions. The expectation value E then can be computed as:

www.manaraa.com

5

 < H > E

In terms of individual contributions, the Schrodinger equation can be written in terms of

the kinetic and potential energies of the electrons and nuclei:

 ()e n ee en nnT T V V V E

eT and nT are the kinetic energy terms for electrons and nuclei respectively

2

2

eN

e
e

e

T

2

2

nN

n
n

n n

T
m

2
 is the Laplacian operator,

2 2 2

2

2 2 2x y z

eeV is the electron-electron repulsion term,

1eN

ee

e f ef

V
r

enV is the electron-nucleus attraction term,

e nN N

n
ee

e n en

Z
V

r

nnV is the nucleus-nucleus repulsion term,

nN

n l
nn

n l nl

Z Z
V

r

The closed form analytic solution for the Schrodinger equation exists only for the

simplest systems, such as those with one or two particles. To evaluate a quantum system

www.manaraa.com

6

of interest, a number of approximations have to be made. In the Born-Oppenheimer

approximation [24] the much slower nuclei are treated as stationary point charges and the

Schrodinger equation then reduces to the electronic Schrodinger equation:

 e e ee enH T V V

e eH E

The general problem of the type 1

ijr
< > has no analytic solution and further

approximations must be made. The crudest solution is to assume that electrons do not

interact with each other. This leads to the independent particle model in which

1 1 2 2() ()IPM r r

is separable with respect to each electron coordinate vector.

The independent particle wavefunction does not satisfy the anti- symmetry requirement,

but properties of the determinant do (since exchanging any two rows or columns changes

the sign). Taking the determinant of IPM leads to Slater determinant HF which in turn

leads to the Hartree-Fock method

1 1 2 1 1

1 2 2 2 21
1 2

1 2

() () ()

() () ()
()

() () ()

N

N

HF N N

N N N N

…

x x x

x x x
x x x

x x x

After performing a series of algebraic manipulations, the closed-shell Hartree-Fock

energy can be written as

 2 (2)HF HF e HF ii ij ij

i ij

E < H > h J K

where iih is the one-electron integral

2

1 1() ()
2

nN

n
ij i j i j

n n

Z
h h dr

r

and the J and K terms, called Coulomb and exchange, respectively, are two-electron

integrals

www.manaraa.com

7

 ()J ij ij

 ()K ij ji

1 1 2 2 1 2

12

1
() () () () ()i j k lij kl r r r r drdr

r

From now on, the HF label will be dropped and will be understood to refer to HF

and H to refer
eH .

The only constraint on the one particle orbitals is that they remain orthonormal,

 i j ij< >

Therefore the orbitals can be manipulated to affect the energy. According to the

variational principle, the best orbitals are those that minimize the energy,

 0E

The method of Lagrange multipliers solves the minimization problem with constraints.

The resulting Lagrange equation

 [()] 0ij i j ij

i j

< H > < >

can be reduced to

k ij kF

where F is the Fock operator

 1[(2)]i i

i

F h J K

Taking the Lagrangian multipliers to be of the form

 ij ij k

the Hartree-Fock minization problem becomes an eigenvalue problem:

 k k kF

Optimizing general orbitals in the above problem is not generally feasible. Instead

Roothaan [25] proposed to expand orbitals in terms of a known basis and restrict the

optimization to the coefficients of a known expansion basis :

www.manaraa.com

8

N

i ib b

b

c

The optimization of molecular orbitals
i
 in terms of a fixed basis leads to the Hartree-

Fock-Roothaan equations

 FC SC

where C is the coefficient matrix and ()i jS is the basis overlap matrix. The above

equation is almost a solvable eigenvalue equation, except for the S term. Although a

general basis is not usually orthonormal, it can be orthonormalized in which case the

overlap matrix becomes the identity matrix, ijS and the Hartree-Fock-Roothaan

equation takes the form of a regular eigenvalue problem

 FC C

Now an expression for the Fock operator can be derived in terms of the coefficients and

one- and two- electron integrals over basis functions

 1 2 2() [() ()]i j i j k l j k j lF h D h h

where 2 ib ibi
D c c is known as the density matrix.

Since the orbital coefficients appear on both sides of the equation, the Hartree-Fock

method must be repeated until the difference between the old and the new coefficients

reaches a certain threshold. Because of that, the Hartree-Fock method is also called the

self consistent field (SCF) method.

The simple interpretation of the Hartree-Fock method is that an electron is moving in the

mean field of the other electrons. The interaction of individual electrons is not correlated,

other than accounting for the Pauli exclusion principle. Accounting for electronic

interaction will be discussed below.

2. Basis Set

To understand the intricate details of the computational chemistry algorithms, especially

when discussing two-electron integrals, a few words must be said about the basis set.

www.manaraa.com

9

Modern basis sets are based on atomic orbitals, which are spatial orbitals reminiscent of

the s p orbital shapes found in physical chemistry books. Because of that the basis

sets are often called atomic basis functions or atomic orbitals, as opposed to molecular

orbitals, which are simply atomic orbitals transformed via the coefficient matrix C .

The correct shape for an (Cartesian) atomic orbital is the Slater-type orbital (STO)

 l m n rAx y z e

where A is the normalization coefficient and l m n are related to the angular momentum

quantum number L ,

 L l m n

Using a Gaussian function, a similar type of orbital, called Gaussian-type orbital (GTO),

can be devised

2l m n rAx y z e

Unlike the Gaussian functions, the Slater functions cannot be separated into x y z

components, making the evaluation of integrals over the Slater basis expensive. On the

other hand, Gaussian function can be written as

2 2 2 2r x y ze e e e

and due to this property, the computation of integrals over the Gaussian functions is much

simpler [26], with a number of different closed-form solutions for one- and two- electron

integrals [27,28,29,30]. Most electronic structure programs use GTOs as basis sets. An

exception to this trend is Amsterdam Density Functional (ADF) program suite [31] which

uses STOs.

To reproduce the approximate shape of an STO, a linear combination of several GTOs

can be taken and fitted according to some criteria, a process known as contraction and the

resulting orbital called contracted Gaussian-type orbital,

2

k

K
rl m n

cgto k

k

Ax y z C e

where K is the construction order and kC are the contraction coefficients. In this context,

the individual Gaussians are called primitives.

www.manaraa.com

10

The individual contracted orbitals which share the same primitives are grouped together

into shells. The primary reason for doing so is computational efficiency. With a correct

algorithm, only the angular term l m nx y z will be different between shell functions; the

terms involving expensive exponent computations will be the same.

The simplest contracted basis sets are of the STO-NG family [32], where N is the number

of contracted GTOs fitted to an STO using a least-squares method. The major difference

between GTOs and STOs is the function shape near the origin, where GTOs are flat and

STOs have a cusp. This is especially important for the core electrons near the nucleus.

More advanced basis sets typically have more GTOs to represent contracted core orbitals

(6-10 GTO) and fewer GTOs to represent non-core orbitals (1-3 GTOs). This segmented

approach strikes a delicate balance between accuracy and computational time.

It should be obvious that a larger basis set will give better orbitals and lower energy,

based on the Variational Principle. However, larger basis sets will also increase the

computational time, may lead to slower convergence, and may result in numerical

instabilities. A majority of time is spent evaluating two-electron integrals and building the

Fock matrix. Although, atomic integrals do not change from iteration to iteration, storing

4N elements can be prohibitively expensive for any large system, and thus the integrals

can be re-computed on-the-fly. Currently, Hartree-Fock computations with a few

thousand basis functions are routinely performed in a matter of hours. In the near future

that number is likely to be the tens of thousands.

3. Electron Correlation

As a rule of thumb, the energy computed with the Hartree-Fock method accounts for 99

% of the total electronic energy. However, the desired physical properties are frequently

associated with the last 1 % of the energy. Hartree-Fock computations can give very good

geometries, but the energy differences can only be qualitative at best.

Recall from the above discussion that the Hartree-Fock model does not account for the

instantaneous electronic interaction, but instead treats each electron as interacting with an

electronic mean field. The difference between the total energy and the Hartree-Fock

energy is called the correlation energy

www.manaraa.com

11

 corr hfE E E

To recover the correlation energy, Hartree-Fock computations must be followed by what

are called correlation methods, which try to recover the correlation energy from the

Hartree-Fock wavefunction. In the context of electron correlation computations, Hartree-

Fock is typically the zeroth order (also called the reference) wavefunction. Among the

many correlation methods there are two that are central to the next chapters: the MP2 and

coupled cluster methods.

The formula for the MP2 energy is relatively simple, expressed only in terms of integrals

over molecular orbitals ()ia jb and orbital energies

2

[2() ()]()
MP

ij ab i j a b

ai bj bi aj ai bj
E

As is customary in many-body methods, the indices i j refer to occupied molecular

orbitals O , a b to virtual orbitals V , and p q r s to atomic basis functions N .

The time consuming part of the MP2 energy computation is not the actual energy

computation, which scales as
2 2O N , but the transformation from atomic to molecular

integrals (also called 4-index transformation), which scale as
4ON . Another bottleneck in

many-body methods is the storage of molecular integrals. For a large MP2 calculation the

storage may well be on the order of terabytes. The details of the MP2 energy computation

will be covered in detail in the corresponding chapter.

Coupled cluster theory was first proposed in nuclear physics [33] and later adopted in

quantum chemistry by Cizek [34] as the exponential ansatz

 1 2()

0 0
nT T TTe e

where 1 nT T are the n-particle excitation operator and 0 is the reference wavefunction,

typically hf in computational chemistry. The excitation operator applied to a reference

wavefunction is written in terms of excitation amplitudes t from hole states i j k (also

referred to as occupied orbitals) to particle states a b c (also referred to as virtual

orbitals),

www.manaraa.com

12

 0

abc abc

n ijk ijk

ijk abc

T t

The CCSD algorithm is an iterative process that scales as
2 2 2N V O and the triples

correction ()T scales as
2 4N V O . To compute the CCSD(T) energy, every type of four-

index molecular integral is needed. The coupled cluster algorithm will be covered in

detail in the last chapter. Both, MP2 and CC can be easily and systematically derived

using Goldstone diagrams, a diagrammatic approach to nonrelativistic fermion interaction

based on Feynman diagrams. A very thorough treatment of the many-body theory can be

found in the excellent book by Shavitt and Bartlet [35].

References

[1] D. R. Hartree. Proc. Cambridge Phil. Soc., 24:89, 1928.

[2] V. Fock. Nherungsmethode zursung des quantenmechanischen mehrkperproblems.

Zeitschrift fr Physik A Hadrons and Nuclei, 61:126–148, 1930. 10.1007/BF01340294.

[3] C. Moller and M.S. Plesset. Note on an approximation treatment for many-electron

systems. Physical Review, 46(7):618, 1934.

[4] J.W. Backus, R.J. Beeber, S. Best, R. Goldberg, L.M. Haibt, H.L. Herrick, R.A.

Nelson, D. Sayre, P.B. Sheridan, H. Stern, et al. The Fortran automatic coding system. In

Papers presented at the February 26-28, 1957, western joint computer conference:

Techniques for reliability, pages 188–198. ACM, 1957.

[5] B.W. Kernighan and D.M. Ritchie. The C programming language. Prentice Hall,

1988.

[6] Dupuis. M, Rys. J, and King H. F. Hondo. Quantum Chemistry Program Exchange,

11, 336338, 1977.

[7] W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, , and J. A. Pople. Gaussian

70. Quantum Chemistry Program Exchange, Program No. 237, 1970.

[8] J. Isaak. Standards-the history of POSIX: a study in the standards process. Computer,

23(7):89–92, 1990.

[9] B. Stroustrup. The C++ programming language. Addison-Wesley Longman

Publishing Co., Inc., 1997.

[10] M. Dupuis and JD Watts. Parallel computation of molecular energy gradients on the

loosely coupled array of processors (LCAP). Theoretical Chemistry Accounts: Theory,

www.manaraa.com

13

Computation, and Modeling (Theoretica Chimica Acta), 71(2):91–103, 1987.

[11] J.D. Watts and M. Dupuis. Parallel computation of the Moller–Plesset second-order

contribution to the electronic correlation energy. Journal of computational chemistry,

9(2):158–170, 1988.

[12] G.D. Purvis III and R.J. Bartlett. A full coupled-cluster singles and doubles model:

The inclusion of disconnected triples. The Journal of Chemical Physics, 76:1910, 1982.

[13] K. Raghavachari, G.W. Trucks, J.A. Pople, and M. Head-Gordon. A fifth-order

perturbation comparison of electron correlation theories. Chemical Physics Letters,

157(6):479–483, 1989.

[14] M. S. Gordon and M. W. Schmidt. Advances in electronic structure theory:

GAMESS a decade later, pages 1167–1189. Elsevier, Amsterdam, 2005.

[15] Cold war’s end hits Cray computer. New York Times, 1992.

[16] In supercomputers, bigger and faster means trouble. New York Times, 1994.

[17] D.E. Bernholdt, E. Apra, H.A. Früchtl, M.F. Guest, R.J. Harrison, R.A. Kendall,

R.A. Kutteh, X. Long, J.B. Nicholas, J.A. Nichols, et al. Parallel computational chemistry

made easier: The development of NWChem. International Journal of Quantum

Chemistry, 56(S29):475–483, 1995.

[18] A. Heinecke, M. Klemm, and H. Bungartz. From gpgpu to many-core: Nvidia Fermi

and Intel many integrated core architecture. Computing in Science & Engineering,

14(2):78–83, 2012.

[19] Python. http://python.org/.

[20] Y. Shao, L.F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown, A.T.B.

Gilbert, L.V. Slipchenko, S.V. Levchenko, D.P. O’Neill, et al. Advances in methods and

algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys.,

8(27):3172–3191, 2006.

[21] J. M Turney, A. C Simmonett, R. M Parrish, E. G Hohenstein, F. Evangelista, J.T.

Fermann, B.J. Mintz, L.A. Burns, J.J. Wilke, M. L Abrams, et al. Psi4: an open-source ab

initio electronic structure program. Wiley Interdisciplinary Reviews: Computational

Molecular Science, 2011.

[22] Boost C++ libraries. http://www.boost.org/.

[23] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, et al. Lapack usersguide:

Release 1.0. Technical report, Argonne National Lab., IL (United States), 1992.

www.manaraa.com

14

[24] M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der

Physik, 389(20):457–484, 1927.

[25] C.C.J. Roothaan. New developments in molecular orbital theory. Reviews of modern

physics, 23(2):69, 1951.

[26] S.F. Boys. Electronic wave functions. i. a general method of calculation for the

stationary states of any molecular system. Proceedings of the Royal Society of London.

Series A. Mathematical and Physical Sciences, 200(1063):542–554, 1950.

[27] J.A. Pople and W.J. Hehre. Computation of electron repulsion integrals involving

contracted Gaussian basis functions. Journal of Computational Physics, 27(2):161–168,

1978.

[28] J. Rys, M. Dupuis, and H. F. King. Computation of electron repulsion integrals

using the Rys quadrature method. Journal of Computational Chemistry, 4(2):154–157,

1983.

[29] S. Obara and A. Saika. Efficient recursive computation of molecular integrals over

Cartesian Gaussian functions. The Journal of chemical physics, 84:3963, 1986.

[30] M. Head-Gordon and J.A. Pople. A method for two-electron Gaussian integral and

integral derivative evaluation using recurrence relations. The Journal of chemical physics,

89:5777, 1988.

[31] G. Te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van

Gisbergen, J.G. Snijders, and T. Ziegler. Chemistry with ADF. Journal of Computational

Chemistry, 22(9):931–967, 2001.

[32] J.A. Pople. Molecular orbital methods in organic chemistry. Accounts of Chemical

Research, 3(7):217–223, 1970.

[33] F. Coester and H. Kümmel. Short-range correlations in nuclear wave functions.

Nuclear Physics, 17:477–485, 1960.

[34] J. Čížek. On the correlation problem in atomic and molecular systems. Calculation

of wavefunction components in ursell-type expansion using quantum-field theoretical

methods. The Journal of Chemical Physics, 45(11):4256–4266, 1966.

[35] I. Shavitt and R.J. Bartlett. Many-Body Methods in Chemistry and Physics: MBPT

and Coupled-Cluster Theory. Cambridge Molecular Science. Cambridge University

Press, 2009.

www.manaraa.com

15

www.manaraa.com

16

Chapter 2. New Multithreaded Hybrid CPU/GPU Approach to

Hartree-Fock

Andrey Asadchev and Mark S. Gordon

Published in the Journal of Chemical Theory and Computation

Abstract

In this article a new multithreaded Hartree-Fock CPU/GPU method is presented which

utilizes automatically generated code and modern C++ techniques to achieve a significant

improvement in memory usage and computer time. In particular, the newly implemented

Rys Quadrature and Fock Matrix algorithms, implemented as a stand-alone C++ library,

with C and Fortran bindings, provides up to 40% improvement over the traditional

Fortran Rys Quadrature. The C++ GPU HF code provides approximately a factor of 17.5

improvement over the corresponding C++ CPU code.

1. Introduction

As computer hardware becomes more sophisticated and complex and programming

languages, compilers, and software patterns mature, it becomes necessary to re-engineer

software written during the eighties or earlier in order to take advantage of modern

hardware and language features. Unlike older hardware, modern processors have more

and more cores, multithreading becomes more and more important, and novel

architectures such as graphical processor units (GPU) enter mainstream scientific

computing.

“Legacy” programs often do not take into account low-level details of modern processors

such as multilayer cache organization, pipelines, and SIMD (single instruction, multiple

data) units
1
. As a result of poor cache performance, programs waste CPU cycles, moving

data at the expense of actual computations. Failure to take advantage of the SIMD

architecture, due for example to unfavorable control structures and memory access

patterns, can lead to as much as a 50 percent drop in performance. Parallel execution

within a single node presents a challenge as well: computational tasks in legacy code tend

to run as processes, rather than as threads, limiting the utility of shared memory and fast

inter-thread communication offered by a multi-threaded environment
2
, resulting in

www.manaraa.com

17

replicated memory which puts additional strain on memory cache and bus. OpenMP can

at times solve the problem of multi-threading in legacy codes, provided that internal

subroutines are thread-safe, which is not always the case.

There are several projects that aim to address shortcomings of legacy code, implementing

the entire suits of Quantum Chemistry algorithms using new programming techniques,

typically in C++, for example PSI
3
 and MPQC

4
.

This paper describes a new approach to the Hartree-Fock method that is meant to address

the requirements of modern hardware and software, from a low-level two-electron Rys

Quadrature
5
 implementation to multi-threaded parallel Fock matrix construction and GPU

implementation. The method described here does not aim to replace an entire software

package, but rather to provide an independent library that can be used to replace or

augment existing Hartree-Fock and integral implementations. This paper is organized as

follows: Section II presents the developments associated with the Rys quadrature

algorithm, including automatically generated code and the requirements for quartets that

contain low and high angular momentum quantum numbers. Section III considers various

aspects of the Fock matrix construction. The C++ CPU implementation is presented in

Section IV, while the corresponding GPU implementation is discussed in Section V.

Section VI considers the performance of the new algorithms, and conclusions are drawn

in Section VII.

2. Rys Quadrature Implementation

Modern computers have complex architectures and pipelines, making it difficult for an

application programmer to write efficient assembly code. Fortunately, modern compilers

are able to produce efficient code if several constraints are met:

 Memory access has a favorable alignment; for example, 16 bytes for the

current Intel Core architecture

 Non-overlapping segments of memory are flagged as such, using a special

type declaration or compiler pragmas, e.g., the C99 restrict keyword

 Innermost loops do not have control statements, such as if or equivalent

 Short innermost loops have bounds that are known at compile time

www.manaraa.com

18

 Innermost memory accesses are contiguous, i.e., they have a stride of one

Provided the above conditions are met, a modern compiler should be able to generate

efficient machine code for a particular architecture using advanced features, such as

SIMD.

Of course, most application programmers (e.g., computational chemists) would not

endeavor to write assembly code. However, nontrivial algorithms, such as the Rys

Quadrature that is used for two-electron integrals in quantum chemistry codes
5
, still

require a significant amount of code to accommodate the compiler requirements. Writing

such codes manually can be time consuming and error-prone, regardless of the language

used. However, there are a number of code generators which can greatly simplify the task

through automation. Using code generators to implement integral routines is not new; for

example, the excellent LIBINT
6
 library was implemented using a code generator. For this

project, the Python Cheetah code generator
7
 was chosen for the following reasons:

 Generator statements are embedded directly into the source code template,

regardless of language, which, for example, can be C++, C, or Fortran.

 The generator statements are just regular Python statements.

 Any Python module can be imported and used in the generator

environment, including several symbolic algebra packages, such as

sympy
8
 and Sage

9
, which provide an interface with Mathematica

10
 and

other computer algebra systems.

The strategy towards implementing the Rys Quadrature algorithm is as follows
5b

:

 Certain integrals, particularly those over basis functions with low angular

momentum quantum numbers, e.g., L=0 (s) and L=1 (p), and consequently

small shell quartet block sizes (e.g., there 64 integrals in a (sp sp|sp s)

quartet, and short polynomial expressions, are best computed directly

using the entire polynomial expression at once, rather than via two-

dimensional intermediates.

 General integrals over basis functions with higher angular momentum

quantum numbers have prohibitively long polynomial expressions and

must be assembled from two-dimensional intermediate integrals via so

called recurrence and transfer relations
5
.

www.manaraa.com

19

2.1. Rys Quadrature

The main idea in the Rys Quadrature is to represent a six dimensional integral

 (ij|kl) = 1 2

12

1
1 1 2 2 i j k l dr dr

r

as a product of three two-dimensional integrals Ix, Iy. Iz,

 () () ()
N

x y z

a

I a I a I a W a

summed over an exact N-point numerical quadrature with roots a and weights W. The

two-dimensional integrals Ix, Iy. Iz are evaluated using recurrence and transfer equations.

The exact formulation of the equations can be found in the original Rys paper
5
.

Each primitive integral above corresponds to a single contraction. When evaluating

contracted shells, the full expression becomes

(|) (, , ,)
A B C D

a b c d

a b c d

ij kl C C C C I a b c d

where the bounds of the summation are shell contraction orders, C are the contraction

coefficients and (, , ,)I a b c d

are primitive uncontracted integrals.

2.2. Small Angular Momentum Integrals

If an integral expression (ij|kl) is simple enough, it can be expanded directly into a

polynomial, removing the need to compute and store two-dimensional integrals. Doing

this also has the benefit of providing the compiler with enough information to enable

aggressive optimization. Furthermore, expanded expressions can be filtered through a

computer algebra system, like Mathematica, simplified, and organized together

arbitrarily. The above strategy is not, however, computationally favorable if the integral

expression is large, since the large amount of produced code tends to overflow the data

and program cache and can adversely impact performance.

The polynomial expressions are expanded from recurrence and transfer formulas as

follows:

 The symbolic algebra Python package, sympy, is used to build a raw

polynomial expression from terminal terms, the starting and ending values

www.manaraa.com

20

in the Rys recursive formulas, using recurrence and transfer formulas.

 The raw polynomial expressions are piped into Mathematica through

Sage, a Python package that provides interfaces with popular computer

algebra systems. Mathematica simplifies the raw polynomial

expressions and performs a common sub-expression elimination (CSE) to

pull out common terms.

 The number of common terms can be quite large, generally larger than the

number of registers (16 for the current generation of Intel x86-64

processors). Simplified expressions are reordered to maximize register

reuse.

 Simplified expressions are stored as a plain text Python dictionary dump,

together with the terminal terms and common terms expressions.

 Since the expression order may have changed, values might have to be

permuted to restore the original integral order

In the expression dictionary dump, each integral block expression has a lookup key,

which is a collection of four strings, corresponding to shell symbols. The first entry is the

dictionary of terminal symbols (those with empty expressions) and common terms (those

with nonempty expressions). The next entry is the list of individual functions in the

integral block, specified by their l,m,n angular momentum quantum numbers. Each

function has a polynomial expression as a string and a list of required terms, both terminal

and common. Once they have been loaded, the expressions can be read from the

dictionary and implemented inside the loop over quadrature roots.

The algorithm is fairly straightforward: the primitive integrals, depending on individual

contractions of the basis functions
 i, j,k,l and the corresponding roots and weights a,w

of the integral shells
 P,Q,R,S , are evaluated inside the four nested loops corresponding

to primitives. The actual integral construction and summation over the roots is handled by

a function specialized for the shell types (e.g., s, sp, d, etc.) of the shells
 P,Q,R,S , i.e. the

actual implementation of the polynomial expressions. The bra and ket primitives are pre-

computed to reduce the number of exponent computations. Once the integral is assembled

for all contractions, it is then reordered to restore the correct order. Finally, the amount of

memory required is determined by the integral quartet size. For small integral blocks, this

www.manaraa.com

21

amount of memory is small enough to completely fit in L1 cache.

Through some experimentation it was found that integral blocks with approximately 160

functions, e.g.
 (fsp|sps) , where sp refers to a hybrid sp shell, and below tend to have the

best balance between performance and code size. Large integral quartets, for example a

full S P quartet, tend to increase code size and compilation time dramatically, without

noticeable performance benefit.

2.3. General Integrals

General integrals with high angular momentum quantum numbers are best computed

using a traditional approach via two-dimensional intermediates. However, the details of

the present implementation are significantly different from others and are best described

using the pseudo algorithm in the C++ Listing 1. The lines in the pseudo-code after “//”

are comments.

// P,Q,R,S are the Shell objects that contain all

// information such as contracted Gaussians, angular //

www.manaraa.com

22

momentum L, etc.

N = (P+Q+R+S)/2 + 1 // number of quadrature roots
bra (P,Q); // bra primitives

for k,l in (R,S) { // ket contractions
 ket (k,l); // ket primitives
 for i,j in (P,Q) { // bra contractions

 // contraction factor
 C = bra(ij)*ket;

 if (C < cutoff) continue; // screening
 // roots and weights
 (a,w) = roots(bra(ij), ket);

 (Gx,Gy,Gz) = recurrence(bra(ij), ket);
 (Ix(K),Iy(K),Iz(K)) = transfer(Gx,Gy,Gz);

 ++K;
 }
}

for r,s in (R,S) { // R,S functions
 Ix = Ix(:,:,x(r),x(s),:)
 Iy = Iy(:,:,y(r),y(s),:)

 Iz = Iy(:,:,z(r),z(s),:)
 for k in K { // contractions

 for a in N { // roots
 // form integrals
 G(0) += Ix(Li,Lj,k)*Iy(0,0,k)*Iz(0,0,k)

 G(1) += Ix(0,0,k)*Iy(Li,Lj,k)*Iz(0,0,k)
 ...

 G(M-1) += ...
 }
 I(0:M) += C*G

 for a in N { // roots
 ...

 }
 I(M,...) += C*G
 ...

 }
 transform(G)

}

Listing 1. Bra Quadrature

The main ideas of the pseudo-code are:

 The bra, PQ | , exponential factors are pre-computed, to avoid a quartic

number of exponent computations.

 Inside the individual primitive loops the roots are computed to form

recurrence intermediates that in turn are used to generate the final two-

dimensional integral via transfer relations for a given contraction K .

 Once all of the two-dimensional integrals are formed. they are transformed

www.manaraa.com

23

into the final electron repulsion integral (ERI). Details of the

implementation are somewhat involved and are explained below.

2.4. Bra Kernel

In calculating the shell functions there is not a simple runtime relationship between the

number of an iteration, corresponding to a particular basis function (, ,)f l m n , and the

individual angular momentum quantum numbers l,m,n . Therefore, the angular

momentum components could be tabulated and looked up during runtime. However,

indirect indexing due to the use of a lookup table prevents effective optimization by the

compiler. In the outer loops, there is little overhead due to indexing, but for the innermost

loops, corresponding to the bra part, the indexing overhead becomes significant. In order

to avoid lookup tables in the bra loops, all of the indexes on the bra side must be available

during compilation. This is fairly easy to accomplish using a code generator, the same

Python Cheetah code generator described above.

Different kernels, corresponding to different numbers of roots, can also be generated

using the code generator. However, since the code described here was written using C++,

this becomes unnecessary, since the C++ template meta language can be used to

accomplish the same result much more effectively. The number of functions computed in

any given block may be too large for the compiler to handle effectively, primarily

because there are only a small number of registers. Therefore, the entire list of bra

functions is broken up into blocks of M functions each. After some experimentation, an

M value of 10 was found to be the most effective.

It should be noted that for a given integral block, the bra subsection is evaluated entirely

for each given ket index, for all contractions. This allows the code to generate the entire

integral block piecewise, and transform individual bra blocks one by one, without

forming the entire integral. The utility of this approach is described in terms of the Fock

matrix construction in more detail below.

Throughout the entire computation, the three innermost indices correspond to roots and

bra indices that are known at compile time, delegating the task of the actual optimization

to the compiler.

www.manaraa.com

24

3. Fock Matrix Construction Implementation

The construction of the Fock matrix
11

 from the integrals and the density matrix can be

split into two parts: higher level iterations over the shell quartets and lower-level

contraction of the density matrix with the integrals to produce a Fock matrix block that

corresponds to a particular integral quartet
 (i,j,k,l)

.

The general approach to contracting an integral I with the density matrix D is outlined in

Listing 2. The coefficient C refers to Coulomb term coefficients, and X refers to

exchange term coefficients. For plain Hartree-Fock (HF) using 8-fold symmetry those

coefficients would be 4 and -1 respectively, but for methods that modify the Fock

operator, e.g., density functional theory (DFT), those coefficients may be different.

// I(i,j,k,l) are already computed: ints

// D(i,j) is density matrix
for l in S { // ket indices
 for k in R {

 for j in Q { // bra indices
 for i in P {

 F(i,j) += C*D(k,l)*I(i,j,k,l)
 F(k,l) += C*D(i,j)*I(i,j,k,l)

 F(i,k) += X*D(j,l)*I(i,j,k,l)

 F(i,l) += X*D(j,k)*I(i,j,k,l)

 F(j,k) += X*D(i,l)*I(i,j,k,l)

 F(j,l) += X*D(i,k)*I(i,j,k,l)
 }
 }

 }
}

Listing 2. Fock contraction

The following modifications are made to improve performance:

 The density and Fock matrix blocks, corresponding to a particular

combination of two shells, are stored contiguously to optimally use cache

locality. This is addressed in more detail in the next subsection.

 The innermost loops are relatively short, and for the best performance the

loop sizes are known at compile time.

 The memory usage is dominated by integral storage. However, since the

integrals are being formed block by block, the entire integral never needs

to be stored. Instead, each bra tile is contracted with the appropriate

www.manaraa.com

25

density tile to form a Fock tile piece by piece.

 Since small angular momentum integrals are formed at once, a specialized

version to handle that case is implemented as well.

The kernel version of the code specialized for the entire bra-ket, i.e. small angular

momentum integrals, is essentially Listing 2 with loop bounds that are known at compile

time, to provide the compiler with the information needed to enable aggressive

optimization. For example, when compiling a Fock kernel corresponding to a (ss|ss)

quartet, all the loop bounds are 1 and the compiler will optimize out the loops altogether.

The kernel version specialized for partial Fock contraction is implemented as a function

object that “remembers” indices ,k l (see the pseudo-code in Listing 3). For each integral

bra tile being formed, the apply function is called. With each transformation, the internal

indices are updated to maintain the correct state.

class Fock {
 k,l = 0 // initial state
 apply(I(P,Q)) {

 for j in Q { // bra indices
 for i in P {

 F(i,j) += C*D(k,l)*I(i,j)
 ...
 F(j,l) += X*D(i,k)*I(i,j)

 }
 }

 ++k // update state indices
 ++l
 }

}

Listing 3. Tiled Fock contraction

3.1. Blocking Fock/density matrix

The utility of block partitioning matrix computations is well understood
12

. However,

partitioning the Fock matrix into blocks is not straightforward since the block nature of

the Fock matrix is determined by the shell order in the basis set. However, the basis set

may be sorted in such a way as to group same-size shells together. Reorganizing the basis

set alone does not give the Fock matrix a uniform block structure since the basis set

typically contains s , p , ... shells. This can be overcome by considering the entire Fock

www.manaraa.com

26

matrix to be a meta-matrix consisting of sub matrices, each with a uniform block

structure, determined by the corresponding shells. Consider a graphical depiction of such

a matrix, as shown in Figure 1, showing a hypothetical meta-matrix with a non-uniform

block structure organized as uniform matrices. The black lines designate the individual

shell block boundaries, with all of the elements inside the block being in a contiguous

memory segment. The red graphs show the consecutive layout of blocks in memory, with

connected blocks being in the same memory segment in that given order. The blue lines

designate the borders of sub matrices, in which all blocks within those sub matrices are of

uniform dimensions.

Figure 1. Meta-matrix with block structure

If the programming language constructs allow, the meta-matrix can be given the usual

matrix semantics that map individual element access to a specific block in the appropriate

sub matrix. In C++ this can be accomplished by defining operator()(i,j). The

effect is that a complex meta-matrix can have all three characteristics: sub matrix, block,

and element-wise access.

The second benefit of organizing the basis set according to shells is to allow efficient

evaluation of multiple similar shell quartets on highly parallel architectures, such as

graphical processing units (GPUs). If the shells are grouped together according to

coefficients and exponents, as well as the angular momentum quantum numbers, then

evaluation of such a block is guaranteed to have the same data except for the Cartesian

www.manaraa.com

27

centers.

If the Fock matrix needs to be sorted for computational efficiency, the density matrix can

be permitted to reflect the desired order. Likewise, if other parts of the program expect

the Fock matrix to be in a different order, once formed, the Fock matrix can be un-sorted.

This is especially relevant if the Fock matrix is to be used by external programs which

may not necessarily sort the basis set.

3.2. Collapsing Fock Algorithm Loops

The regular Fock matrix algorithm, Listing 4, becomes cumbersome if the work has to be

divided among different parallel domains and different processors/accelerators. To make

the work distribution easier to implement and more efficient, the four nested loops of the

Fock algorithm can be collapsed into a single queue-like generator, as illustrated in

Listing 5. The basic idea is to map a single index back to four loop indices.

The advantage of using a queue rather than nested loops is that a queue can be

transparently and easily parallelized. For the Fock algorithm, the queue tuples are

generated on the fly, rather than stored at the expense of 4N tuples.

The internal counter employed in the queue can be a generic counter, for example, a

distributed read-modify-write counter, which allows one to easily transform a seemingly

single-node queue into a distributed queue.

for l in N {
 for j in N {

 // loop bounds account for 8-fold symmetry
 for k in max(l,j):N {
 for i in j,k+1 {

 ...
 }

 }
 }
}

Listing 4. Fock looping

www.manaraa.com

28

class Queue {
 // initial values
 counter = 0;

 last = 0;
 (i,j,k,l) = (0,0,0,0);

 next() {
 next = (i,j,k,l);
 end = (counter++)+1; // advance counter

 for last:end {
 if (empty()) throw exception; // signal if empty

 next = (i,j,k,l);
 i += 1; // i loop
 advance = (i >= (k+1)); // k loop

 if (advance) {
 k += 1;

 i = j;
 }
 advance = advance and (k == N); // j loop

 if (advance) {
 j += 1;

 k = max(j,l);
 i = j;
 }

 advance = advance and (j == N); // l loop
 if (advance) {

 l += 1;
 j = 0;
 k = max(j,l);

 i = j;
 }

 }
 last = end;
 return next;

 }
}

...
while (true) {
 try: (i,j,k,l) = queue.next(); // get next tuple to evaluate

 catch: break; // the end, break from the loop
 ...

}

Listing 5. Fock task queue

3.3. Exchanging bra/ket order

Most of the integral algorithms, including the Rys Quadrature, prefer the general integral

(pq|rs) over shells P,Q,R,S to be sorted such that P Q,R S,P R . Exchanging the

order inside the integral code adds complexity and has a performance penalty. But for the

www.manaraa.com

29

purposes of a Hartree-Fock code, exchanging the order of the quartet indexes alone and of

the corresponding sub matrices is sufficient. However, the screening must be done before

changing the order if one is using an unmodified screening loop structure.

3.4. Normalization Coefficients

Integrals over functions with angular momentum higher than the P shell must be

normalized. The normalization can either be done in the integrals themselves or by

absorbing the normalization coefficients into other terms. The advantage of removing

normalization coefficients from the integrals is that the integral code is simpler when it is

devoid of normalization coefficients.

For the purposes of the HF algorithm, the following approach can be used to shift the

normalization coefficients Ni from the integrals to the Fock (F) and density (D) matrices

to form normalized matrices F* and D*:

F

ij
(N

i
N

j
N

k
N

l
(ij | kl))D

kl
 (1)

D

kl

* (N
k
N

l
)D

kl
 (2)

F

ij

* (ij | kl)D
kl

* (3)

F

ij
(N

i
N

j
)F

ij

* (4)

Therefore, normalization can be handled by first normalizing the density matrix, then

performing the regular Fock algorithm, and normalizing the resulting Fock matrix.

3.5. Multithreaded Implementation

A multithreaded Fock algorithm allows one to reduce the memory overhead by

maintaining only a single copy of the Fock and density matrices per node. The density

matrix, which is read-only, does not need to be protected from conflicting updates.

However, the Fock matrix is subject to conflicting simultaneous updates from multiple

threads, known as race conditions. For example, evaluating integral quartets (i, j,k,l)

with values (1,1,4,4) and (1,1,3,3) requires an update to the Fock elements

 F (k , l) F (1,1) in both cases. If the two integral quartets are to be evaluated by two

distinct threads, the access to the Fock elements must be synchronized so as to avoid race

conditions.

There is a number of ways this can be accomplished. For the best performance an

www.manaraa.com

30

approach using a matrix block lock/mutex (mutual exclusion object) was chosen. Since

the entire Fock matrix can be arbitrarily partitioned into blocks, each block can be given

its own mutex that is locked when a thread is ready to update the corresponding block.

However it is wasteful to lock the entire Fock matrix block while the integrals are being

computed and contracted. A better alternative is for each thread to maintain up to six

Fock buffers,
 F(i, j)...F(j,l), which can then be accumulated into the main shared Fock

matrix. The algorithm outline is in Listing 6.

for (i,j,k,l) in ERI {
 // thread buffers
 Submatrix f(i,j), ..., f(j,l)

 (f(i,j), ..., f(j,l)) = Contract(Integral(i,j,k,l), D)
 // accumulates submatrix

 for f(m,n) in ((f(i,j), ..., f(j,l))) {
 F.lock(m,n)
 F(m,n) += f(m,n)

 F.unlock(m,n)
 }

}

Listing 6. Shared Fock updates

4. C++ Implementation Details

Since the approach detailed in the current work is written in C++, the following libraries

and techniques are available:

 Boost libraries
13

 C++ meta-programming
14

, including boost::enable_if
15

 and

boost::mpl
16

 C99 preprocessor and Boost Preprocessor
17

 OpenMP
18

The code relies heavily on template meta-programming to accommodate compile time

requirements of the integral and Fock kernels and to reduce the amount of boiler-plate

copy/paste. Various preprocessor tricks of the Boost Processor are used heavily as well.

For example, to “transform” a runtime value into a compile time value, the Boost

Preprocessor can be used to generate the transformation, e.g., Listing 7.

www.manaraa.com

31

BOOST_PP_SEQ_FOR_EACH_PRODUCT will apply a macro ERI for each Cartesian

quartet of shell types, automatically creating all possible handlers for a quartet followed

by a special case if the quartet is invalid, i.e., not one of the TYPES in the listing below.

#define TYPES (SP)(S)(P)(D)(F)//...

void runtime(Quartet quartet) {

 type a = quartet[0];
 type b = quartet[1];
 type c = quartet[2];

 type d = quartet[3];

#define ERI(r, types) \
 if (a == BOOST_PP_SEQ_ELEM(0, types) && \

 b == BOOST_PP_SEQ_ELEM(1, types) && \
 c == BOOST_PP_SEQ_ELEM(2, types) && \

 d == BOOST_PP_SEQ_ELEM(3, types)) { \
 typedef shell_pair<BOOST_PP_SEQ_ELEM(0, types), \
 BOOST_PP_SEQ_ELEM(1, types)> bra; \

 typedef shell_pair<BOOST_PP_SEQ_ELEM(2, types), \
 BOOST_PP_SEQ_ELEM(3, types)> ket; \

 eri<bra,ket>(quartet);

 BOOST_PP_SEQ_FOR_EACH_PRODUCT(ERI, (TYPES)(TYPES)(TYPES)(TYPES))
 {

 throw invalid_quartet();
 }
}

Listing 7. Using preprocessor

The multithreading was implemented using OpenMP. While the Boost Thread library is

much more powerful and versatile than OpenMP, only a subset of the multithreading

constructs were needed to make the code multithreaded, primarily the loop counter

synchronization and mutex constructs. In addition to the above-mentioned libraries, other

miscellaneous components from the Boost and Standard Template Library are used

throughout.

5. GPU Implementation

There have been various GPU implementations for electron repulsion integrals; for

example, the McMurchie-Davidson
19,20

, and Rys Quadrature
5b,21,22

approaches. Early on,

the GPU implementations primarily targeted single precision computations with s , p

functions only, using either CUDA C or accelerator statements. The current generation of

www.manaraa.com

32

GPU hardware has a much smaller time difference for single vs. double precision, making

the case for single precision less obvious.

The authors have utilized double precision exclusively to reproduce the CPU results and

to go well beyond s and p functions. The GPU implementation was done using NVIDIA

CUDA technology. In developing the GPU implementation of the Hartree Fock method,

the following factors are considered:

 High angular momentum and low angular momentum/highly contracted

integrals are different in nature and warrant different implementation

approaches.

 The integral kernels must be able to evaluate many batches of integrals in

one launch. By sorting according to the basis set, a large number of

quartets, differing only in the atom centers, but not in shell primitives, can

be generated.

 The integrals must be contracted with the density D as soon as possible to

reduce the memory overhead from 4n to 2n where n is the shell size order,

e.g. n=6 for a Cartesian d-shell. Therefore, the entire integral quartet is

never written into the device memory.

 Contracting integrals with the density directly results in race conditions

which must be accounted for.

 Integral batches which cannot be evaluated on the device, must be done on

the host.

The current Fermi hardware has 32,768 registers and 48KB of shared memory. The

number of concurrent thread blocks is 8. A typical integral kernel will use ~60 registers

per thread and 6KB of shared memory. Therefore, up to 8 thread blocks can be executed

simultaneously, 64 threads each. The 64 threads are executed in warps, with 32 threads

per warp. The threads in each warp are implicitly synchronized but their execution is not

implicitly synchronized with the other warp. In essence, a warp can be thought of as an

independently executing unit. This fact can be used to partition work along the warp or

sub-warp boundaries.

The development of the integral kernels closely follows the CPU version: the

implementation is split into general and low angular momentum kernels. The low angular

www.manaraa.com

33

momentum kernels are parallelized over the contraction loop. In both cases, an efficient

implementation requires that the type of integral be known at compile time. This is

handled by implementing integrals using C++ templates, with the bra-ket type being a

compile time parameter and the shell exponents and coefficients a runtime parameter. The

shells, centers, and quartet lists are stored in the device memory. Regardless of the

implementation, each kernel loads all three sets of data and forms the corresponding bra-

ket primitives in shared memory.

5.1. General Integral Kernel

The general integral kernel is applicable to most combinations of contraction order and

bra-ket types. While the general kernel may not perform equally well for some

combinations, these combinations can be handled by specialized kernels chosen at

runtime.

There are multiple ways one can approach the problem of implementing a general Rys

Quadrature algorithm on the GPU architecture. The approach taken here is as follows:

 All roots and weights are computed first and stored in the shared memory first.

 Each thread is assigned a 3-D index corresponding to the recurrence and transfer

computations it will perform, where the x index maps to an angular momentum,

the y index maps to one of the three Cartesian coordinates , and the z index maps

to root.

 The x-index corresponds to either a bra or a ket index. Let abL be the total bra

angular momentum a bL L and N the number of roots. In general,

(L

ab
1)*3* N threads are needed to evaluate recurrence and () * 3 *a bL N

threads are needed to evaluate transfer, with the higher value being the total

number of threads required.

In certain cases, e.g., if one or more of the shells are S (L=0), not all of the recurrence and

transfer computations are needed; then, the number of threads will be smaller than

(L

ab
1)*3* N . The computations are independent of one another in the y and z indices,

but are dependent on the previous results of a thread with a different x-index (and the

same y, z indices). Consider the graphical depiction (Fig. 2) of a transfer relation to form

www.manaraa.com

34

a (fd| bra intermediate from a (hs| bra. The y-axis corresponds to the first center of the

bra, and the x-axis corresponds to the second center of the bra. Each index (p,q) depends

on (p+1,q-1) and (p,q-1). For example, the index (3,2) depends on (3,1) and (4,1) which

in turn depend on (3,0), (4,0), (5,0). The intermediate
 (4,2), computed by thread 4 ,

depends on the value of
 (5,1) computed by thread 5 . To ensure correctness, the work of

both threads must be synchronized. If the threads are aligned to 2n
 boundaries, such they

all fall within the same warp, thesynchronization is implicit. In other words, if the overall

number of threads needed is

(L

ab
1)*3* N , padding

(L

ab
1) to a power of 2 will

ensure that all threads with the same y,z indices are in the same warp at the negligible

expense of some idle threads.

Figure 2. Transfer diagram to form (fd | bra

There are three ways the mappings can be aligned to a warp:

(1) The entire recurrence/transfer computation (if small enough) is mapped to

a warp (or, a half-warp or a quarter-warp, etc). This holds if

(L

ab
1)*3*N warp.

(2) The xy dimension is aligned to a 2
n

 boundary. For example in the transfer

figure above 5abL , the xy-boundary is therefore 16 threads since

3 1 5a bL

and the next power of 2 is 2

n 16 .

www.manaraa.com

35

(3) The x dimension is aligned to a 2n
 boundary. For example, if

L
ab

7, the

x-boundary is 8 threads: since the next power of 2 is 2 8
n

.

Option (1) is preferred. If the first condition fails, the choice between options (2) and (3)

depends on which one minimizes the number of threads needed to perform

recurrence/transfer computations. For example, if 4
ab

L , recurrence/transfer option (2)

needs 16 threads, while option (3) requires 24 threads per root (since the number shown

for (3) is per one Cartesian index, it must be multiplied by 3). If

L
ab

7, option (2) needs

32 threads, while option (3) needs 24 threads.

Once the intermediate 2D integrals are in shared memory, each thread computes a subset

of integrals. The mapping between a thread/integral index and the corresponding 2D

integrals index is stored in the main memory and looked up for each element. The index

is stored in a four-element vector, with the fourth index containing the coefficient index

for hybrid SP functions.

Once all of the integrals are formed, they are transferred into the shared memory space

previously used to store roots and intermediates. The exact number of integrals each

thread computes depends on the size of the integral quartets and the number of threads

launched. The number of threads depends mostly on the dimensions of the

recurrence/transfer computations and the amount of shared memory used by the kernel.

To accommodate those two requirements, a number of kernels are available with 2, 3, 4,

or 8 multiples of a warp and the corresponding number of integrals per thread. During

runtime, the kernel that maximizes the device occupancy is chosen.

For the case in which the entire recurrence/transfer computation can be mapped to a

single warp, the integrals can be partitioned to warps rather than to an entire thread block,

with each warp assigned to evaluate a unique contraction.

As implemented, the above approach is able to handle any quartet with a total angular

momentum of 9 or less, for example (fd | dd) , including shells with hybrid sp

coefficients. The limit of 9 is imposed by the Rys roots program.

www.manaraa.com

36

5.2. Low Angular Momentum Integrals

The most natural way to evaluate low angular momentum integrals is to assign individual

quartets to a thread block and a single contraction to a thread, with each thread evaluating

all integral elements corresponding to that contraction. However, this scheme becomes

inefficient if the number of contractions is smaller than the number of threads in a block.

This problem can be partially solved by assigning individual roots, rather than

contractions, to a thread. For example, for a
 (ps|ps)

 quartet this effectively doubles the

number of tasks to distribute since for each contraction there are two roots generated.

The low angular momentum kernels reuse the CPU kernel verbatim, with each device

thread evaluating an individual root and all of the corresponding integrals, subsequently

reduced into shared memory.

Once implemented, the above approach does not saturate the threads. The above

implementation was therefore modified to handle an individual quartet per warp, in

essence assigning two quartets per thread block. As an additional benefit, shell primitive

loads decrease by half.

5.3. GPU Hartree-Fock Implementation

It is not possible to implement a parallel version of the Fock contraction within a thread

block in which all six Fock contributions can be evaluated in the single inner loop. The

approach taken here is to split the six updates onto separate loops, such that each Fock

element can be computed independently. The implementation is as follows:

 One of the six integral/density loops is mapped to a warp. Hence, one

thread block can contract and store concurrently one or more Fock tiles

corresponding to the integral batch.

 The individual Fock matrix elements are mapped uniquely to a thread in a

warp.

 The warp loads the density tile into shared memory.

 The density tile is contracted with the integral batch and the Fock matrix

element is stored in a register.

 The Fock matrix is locked with an exclusive read/write lock, and a Fock

matrix element is added to the device memory

www.manaraa.com

37

 The mutex is unlocked and the warp proceeds to contract the next tile.

 Both the density and Fock tiles are stored in a block manner, such that all

elements of a tile are continuous in memory.

lock(i,j) {
 while (atomicCAS(mutex(i,j),1)) {}

}
unlock(i,j) {
 mutex(i,j) = 0;

}

fock (i, j, k, l) {
 shared G; // integrals

 shared d(k,l); // density tile
 d(k,l) = D(k,l); // load density tile

 f = contract(g,d); // contract
 lock(i,j); // obtain lock
 F(i,j) += f; // add to main memory

 unlock(i,j); // release lock
}

if (do_ij) fock(i, j, k, l);

if (do_kl) fock(k, l, i, j);
if (do_ik) fock(i, k, k, l);

if (do_il) fock(i, l, k, l);
if (do_jk) fock(j, k, i, l);
if (do_jl) fock(j, l, i, k);

Listing 8. GPU HF kernel

Only one contraction out of six has a simple indexing; the other five contractions traverse

the integrals with a non-contiguous stride, which must be accounted for.

The current CUDA implementation does not provide a built-in device memory mutex,

however the mutex can be implemented with the atomic compare and swap operation,

atomicCAS. The mutex implementation, summarized in Listing 8, will spin until a zero

is read. Rather than locking the entire Fock matrix, only the individual tiles are locked at

a time.

To achieve performance in the presence of the mutex, the quartets must be traversed so

that the indices are not too similar; otherwise one would encounter mutex contention. For

example, processing quartets (0,0,0,0),(1,0,0,0),... would result in a high number of

collisions as integral quartets are prescreened sequentially. This problem can be avoided

www.manaraa.com

38

by traversing the quartet list in non-one strides: for example, in strides of 32 in a round-

robin manner, provided the quartet lists are on the order of thousands of entries. Since the

basis set is sorted to begin with, the generated integral lists are typically well into the

thousands.

5.4. Host/GPU Integration

The GPU device is driven by a separate host thread. First, the density matrix is copied

into the device memory and the Fock matrix is initialized to zeros. The GPU thread will

then request a task from the task queue. If the quartet task can be evaluated by a device

kernel, the quartets are prescreened on the host, asynchronously copied to the device and

the kernel is launched, asynchronously. This leaves the host thread to either prescreen the

next batch or to evaluate those quartets that cannot be handled on the device. This

approach allows for the overlap of the CPU/GPU execution. As will be shown in the

performance section, the number of unhandled quartets is small, even with a high angular

momentum basis set. Once the tasks are exhausted, the Fock matrix on the device is

merged into the host.

6. Performance

The newly implemented HF algorithm was compared against the standard GAMESS
23

code, using the Rys Quadrature method only, as well as the default GAMESS option

which chooses the optimal integral package according to the integral types
24

.

The GAMESS code was compiled with the following command:

gfortran -O3 -msse3

The new implementation was compiled with:

g++ -O3 -msse3

The gcc version was 4.4.3 for both gfortran and g++. The benchmarks were executed on

two Intel Xeon E5405 2.00 GHz CPUs.

The timing comparisons of the new C++ CPU code with the GAMESS code are listed in

Table 1. All of the timings are given in seconds, with C++ and GAMESS runs set to

utilize a single core. The following should be kept in mind when interpreting the results:

 The rotated axis algorithm and its variations are algorithmically much less

complex than the Rys Quadrature algorithm for contracted shells, like

www.manaraa.com

39

those typically found in low angular momentum basis sets, so GAMESS

calculations that use only the Rys algorithm (for comparison purposes)

will naturally take longer than the GAMESS default (optimal) option noted

above.

 The rotated axis code
24

 in GAMESS has been re-implemented to take

some advantage of modern processors.

 The Rys Quadrature algorithm is advantageous for small contraction/high

angular momentum basis sets. The implementation of the Rys Quadrature

algorithm in GAMESS is the original implementation from the HONDO
25

package and does not take into account modern processor architecture.

 For large basis sets with f functions the relative number of shell quartets

handled by the Rys Quadrature algorithm is significantly higher than for

smaller basis sets.

The test computations were performed on the molecules Cocaine, Taxol, and

Valinomycin using basis sets that incorporate a different number of s , p , sp , d , and f

shells. Cocaine is the smallest of the three molecules and Valinomycin is the largest. The

improvement over the original Rys Quadrature is on the order of 30-40% for all cases.

When compared to the default integral option in GAMESS, which picks the Rys

Quadrature only if f and higher angular momentum functions are present, the

performance is either higher, lower, or the same, depending on the number of d

functions, the size of the basis set and correspondingly the memory requirement of the

density and Fock matrices.

The rewritten Rys Quadrature algorithm is still much slower than the rotated-shell axis

code when only s, p functions are involved. The difference is most pronounced when the

total basis set is small. The difference diminishes with increasing Fock and density matrix

sizes as memory locality becomes more important. For example, for the Cocaine 6-31G

computation, the rotated shell axis code is 75% faster, but only 30% faster with the much

larger Valinomycin 6-31G computation.

When d functions are present, the C++ Rys Quadrature code performs better than the

current packages as the basis set size increases. For Taxol and Valinomycin, the new CPU

www.manaraa.com

40

approach outperforms the current GAMESS codes by a few percent. The new code

clearly becomes faster if f functions are present. In the best case scenario, it is 31%

faster than the GAMESS integral packages, due to both better memory locality and the

higher fraction of quartets with higher angular momentum. Overall, the new Hartree-Fock

implementation is scalable and efficient, improving the overall performance by as much

as 30%.

Table 1. C++ Rys method CPU performance vs GAMESS

System GAMESS
1
 GAMESS/Rys

2
 C++

3
 Improvement

4
 (%)

Cocaine 6-31G 21.3 52.4 37.2 -74.6/29.0 %

Cocaine 6-31G(d) 65.0 112.9 75.2 -15.7/33.4 %

Cocaine 6-31++G(d,p) 402.7 592.0 405.1 -0.60/31.6 %

Cocaine 6-311++G(2df,2p) 3424.4 3686.4 2356.3 31.2/36.1 %

Taxol 6-31G 310.2 691.6 474.1 -52.8/31.4 %

Taxol 6-31G(d) 1104.2 1729.2 1040.0 5.8/39.8 %

Taxol 6-31++G(d,p) 11225.9 15380.5 10288.0 8.4/33.1 %

Valinomycin 6-31G 853.6 1700.7 1104.4 -29.3/35.3 %

Valinomycin 6-31G(d) 2285.0 3445.7 2104.8 7.9/38.9 %

 All times are in seconds on a single core

1. GAMESS using various ERI methods (default)

2. GAMESS using only Rys method

3. Newly implemented C++ Rys method

4. Improvement over default GAMESS/ improvement over Rys-only GAMESS

The comparison between the C++ CPU and GPU codes is summarized in Tables 2, 3, 4,

broken down by the relative time a particular shell quartet takes. A quartet size is the

product of the shell sizes in a quartet. For example,
 (ps|ss) quartets are of size 3

(3*1*1*1) and (dd | dd) quartets are of size 1296 (6*6*6*6). The benchmark molecule is

Taxol and the three basis sets are cc-pVDZ, cc-pVTZ, and 6-31G(d)
26

. The correlation

consistent basis sets have contraction orders as high as 4096, while the Pople basis sets

rely heavily on hybrid sp shells. Note that a large fraction of integral time is spent

computing the multitude of integrals with p shells. In fact, for the cc-pVDZ basis set,

www.manaraa.com

41

60% of the total time is spent evaluating the smallest (in terms of quartet size) four

integrals.

The GPU speed-ups over the single CPU core times (Tables 2,3,4) vary from 17.5x to 12x

for the cc-pVTZ basis set. The specialized low-angular momentum quartet kernels

perform fairly well, with the lowest speed-up for the last specialized kernel with two sp

shells, size 16. The speed-up consequently drops for the general kernel. The performance

improves as the quartet gets bigger. The number of slower kernels in the shell size 16-100

range is rather high, and it tends to lower the overall speed-up.

Table 2. Taxol/cc-pVDZ GPU performance

quartet size
1
 CPU % by time

2
 GPU speed-up (x)

3

1 14.2 35.2

3 22.8 23.0

6 6.6 18.5

9 19.3 17.4

18 9.6 14.5

27 7.0 9.6

36 1.6 11.4

54 8.7 12.6

81 1.9 12.8

108 3.3 17.2

162 2.5 16.0

216 0.4 14.3

324 1.6 16.7

648 0.4 17.9

1296 0.1 15.0

overall
4
 5068.66 s 17.5

1
 product of 4 shell sizes, e.g., s=1, p=3, sp=4, d=6

2
 fraction of total time computing quartet of this size

3
 GPU speed-up (relative to C++ CPU) for quartets of this size

4
 total time and total speed-up

www.manaraa.com

42

Table 3. Taxol/cc-pVTZ GPU performance

quartet size
1
 CPU % by time

2
 GPU speed-up (x)

3

1 4.3 25.9

3 8.5 17.5

6 4.6 15.1

9 8.4 13.8

10 1.7 14.6

18 8.0 11.6

27 3.7 8.2

30 3.7 9.3

36 2.5 10.4

54 8.3 11.4

60 2.5 13.3

81 1.1 11.4

90 4.1 15.1

100 0.8 15.5

108 5.8 15.9

162 2.9 15.0

180 5.2 14.0

216 1.2 14.1

270 1.7 17.3

300 1.4 15.8

324 3.5 17.3

360 1.7 15.4

540 3.6 18.9

600 1.1 15.7

648 1.6 17.9

900 1.1 18.7

1000 0.2 15.0

1080 2.9 15.3

1296 0.4 15.8

1800 1.6 19.4

2160 0.7 20.1

3000 0.3 n/a

3600 0.7 n/a

6000 0.3 n/a

10000 0.0 n/a

Overall
4
 35110.4 s 12.0

1
 product of 4 shell sizes, e.g., s=1, p=3, sp=4, d=6

2
 fraction of total time computing quartet of this size

3
 GPU speed-up (relative to C++ CPU) for quartets of this size

4
 total time and total speed-up

www.manaraa.com

43

Table 4. Taxol/6-31G(d) GPU performance

quartet size
1
 CPU % by time

2
 GPU speed-up (x)

3

1 1.7 28.5

4 6.5 20.9

6 1.9 18.8

16 12.3 13.1

24 6.6 10.6

36 1.1 11.7

64 13.9 13.7

96 16.8 15.8

144 5.9 19.5

216 0.6 15.4

256 12.4 23.5

384 11.5 20.9

576 7.0 20.2

864 1.7 21.3

1296 0.2 16.6

Overall
4
 1031.94 s 16.6

1
 product of 4 shell sizes, e.g., s=1, p=3, sp=4, d=6

2
 fraction of total time computing quartet of this size

3
 GPU speed-up (relative to C++ CPU) for quartets of this size

4
 total time and total speed-up

CPU and GPU execution can run together to occupy all available resources on the nodes.

Table 5 shows the wall clock time required to perform a single SCF iteration of fairly

large computations. To showcase various points of performance and comparability, the

times are given for combinations of serial and parallel execution with or without GPU.

www.manaraa.com

44

Table 5. Combined CPU/GPU performance

System 1 core 8 cores 1 GPU 8 cores + 1 GPU

Taxol 6-31G 474.1 60.2 37.4 26.5

Taxol 6-31G(d) 1040.0 132.2 80.2 53.0

Taxol 6-31G(2d,2p) 3429.8 442.3 290.0 178.1

Taxol 6-31++G(d,p) 10288.0 1243.9 984.5 539.9

Valinomycin 6-31G 1104.4 143.9 92.4 60.0

Valinomycin 6-31G(d) 2104.8 270.7 189.6 116.9

Valinomycin 6-31G(2d,2p) 7439.3 964.0 554.0 328.0

All times are in seconds

The times include all steps to evaluate a single iteration energy, including diagonalization

As can be seen, the multithreaded implementation is efficient, consistently achieving over

95% parallel efficiency even for the small computations. Although not shown, the

implementation scales well beyond 8 threads. In case of the largest Valinomycin

benchmark, combining CPU and GPU execution brought a calculation that took more

than two hours to just over 5 minutes.

7. Conclusions

The newly implemented Rys Quadrature and Fock Matrix algorithms, implemented as a

stand-alone C++ library, with C and Fortran bindings, provides on the order of 40%

improvement over the traditional Fortran Rys Quadrature and performance that is similar

to that of less computationally intensive algorithms. The library is fully multithreaded and

has favorable scaling across eight cores or more cores within a single node. The library

has a simple interface to evaluate a block of integrals as well several compile time

parameters to optimize performance. Although algorithmically much more expensive, the

new Rys quadrature implementation uses a processor effectively to match and beat the

performance of recently implemented algorithms, such as those found in GAMESS
24

,

which have much less algorithmic complexity for small angular momentum integrals.

www.manaraa.com

45

The GPU version, adopted from the CPU version, shows speed-ups as high as 17.5x.

Importantly, this speedup is relative to the newly optimized C++ CPU code, not to the

original legacy Fortran code. The Rys Quadrature however does not scale well in the mid-

size shell quartets. Port of a Rotated-Shell axis code is likely to increase the overall

performance to 20X or higher.

References

1. Gerber. R. The software optimization cookbook : high-performance recipes for IA-32

Platforms. Intel Press, Hillsboro Or., 2006.

2. Gerber. R. Programming with hyper-threading technology how to write multithreaded

software for Intel IA-32 processors. Intel Press,, Hillsboro, Or., 2004.

3. Turney, J. M., Simmonett, A. C., Parrish, R. M., Hohenstein, E. G., Evangelista, F. A.,

Fermann, J. T., Mintz, B. J., Burns L. A., Wilke, J. J., Abrams, M. L., Russ, N. J.,

Leininger, M

. L., Janssen, C. L., Seidl, E. T., Allen, W. D., Schaefer, H. F., King, R. A., Valeev, E. F.,

Sherrill, C. D., Crawford, T. D., Psi4: An open source ab initio electronic structure

program, Comput. Mol. Sci., 2011.

4. Janssen, C. L., Nielsen, I.B., Leininger, M.L., Valeev, E.F., Kenny, J.P., Seidl, E.T.,

The Massively Parallel Quantum Chemistry Program (MPQC), Sandia National

Laboratories, Livermore, CA, 2008.

5. (a) Rys, J., Dupuis, M., King, H.F., Computation of electron repulsion integrals using

the Rys quadrature method, J. Comput. Chem., 154–157, 4(2), 1983;

 (b) Asadchev, A., Allada, V., Felder, J., Bode, B.M., Windus, T.L., Gordon, M.S.,

Uncontracted Rys Quadrature Implementation of up to g Functions on Graphical

Processing Units, J. Comp. Theor. Chem., 696-716, 6, 2010.

6. Valeev, E.F., Fermann, J.T., Libint. http://sourceforge.net/p/libint/ (accessed Aug 6,

2012)

7. Cheetah - the Python-Powered template engine. http://www.cheetahtemplate.org/

(accessed Aug 6, 2012)

8. SymPy Development Team. SymPy: Python library for symbolic mathematics, 2009.

9. Stein, W., Sage: Open Source Mathematical Software (Version 2.10.2). The Sage

Group, 2008. http://www.sagemath.org(accessed Aug 6, 2012)

www.manaraa.com

46

10. Wolfram, S., The Mathematica(R)book. Wolfram Media Inc., Champaign IL USA,

5th ed. edition, 2003.

11. Furlani, T.R., King, H.F., Implementation of a parallel direct SCF algorithm on

distributed memory computers, J. Comput. Chem., 91–104, 16(1), 1995.

12. Buttari, A., Langou, J., Kurzak, J., Dongarra, J., Parallel tiled QR factorization for

multicore architectures, Proceedings of the 7th international conference on Parallel

processing and applied mathematics, PPAM'07

13. Boost C++ libraries. http://www.boost.org/ (accessed Aug 6, 2012)

14. Abrahams, D., C++ template metaprogramming : concepts, tools, and techniques

from boost and beyond, Addison-Wesley, Boston, 2005.

15. boost::enable_if. http://www.boost.org/doc/libs/release/libs/utility/enable_if.html

(accessed Aug 6, 2012)

16. The Boost MPL library

 http://www.boost.org/doc/libs/release/libs/mpl/doc/index.html (accessed Aug 6, 2012)

17. The Boost Preprocessor

 http://www.boost.org/doc/libs/release/libs/preprocessor/doc/index.html (accessed Aug

6, 2012)

18. Boost thread. http://www.boost.org/doc/libs/release/doc/html/thread.html (accessed

Aug 6, 2012)

19. Ufimtsev, I.S., Martinez, T.J., Quantum chemistry on graphical processing units. 1.

Strategies for two-electron integral evaluation, J. Chem. Theory Comput, 222–231, 4(2),

2008.

20. Ufimtsev, I.S., Martinez, T.J., Quantum chemistry on graphical processing units. 2.

direct self-consistent-field implementation. J. Chem. Theory Comput, 1004–1015, 5(4),

2009.

21. Yasuda, K., Two-electron integral evaluation on the graphics processor unit. J.

Comput. Chem., 334–342, 29(3), 2008.

22. Wilkinson, K.A., Sherwood, P., Guest, M.F., Naidoo K.J., Acceleration of the

GAMESS-UK electronic structure package on graphical processing units. J. Comput.

Chem., 2313–2318, 32(10), 2011.

23. Gordon, M.S., Schmidt, M.W., Advances in electronic structure theory: GAMESS a

decade later, Theor. Applications Comput. Chem., Ch.. 41, Dykstra, C.E., Frenking, G.,

Kim, K.S., Scuseria, G.E., Eds., Elsevier, Amsterdam, 2005.

www.manaraa.com

47

24. Ishimura, K., Nagase, S., A new algorithm of two-electron repulsion integral

calculations: a combination of Pople-Hehre and McMurchie-Davidson methods. Theor.

Chem. Acc,185–189, 120, 2008.

25. Dupuis, M., Rys, J., King, H.F., Hondo. Quantum Chemistry Program Exchange, 11,

336338, 1977.

26. Davidson, E.R., and Feller, D., Basis set selection for molecular calculations. Chem.

Rev., 681–696, 86(4), 1986.

www.manaraa.com

48

Chapter 3. A New Algorithm for Second Order Perturbation Theory

Andrey Asadchev and Mark S. Gordon

Submitted to the Journal of Chemical Theory and Computation

Abstract

A new second order perturbation theory (MP2) algorithm is presented for closed shell

energy evaluations. The new algorithm has a significantly lower memory footprint, a

lower FLOP (floating point operations) count, and a transparent approach for the

disk/distributed memory storage of the MP2 amplitudes. The algorithm works equally

well on a single workstation, small cluster, and large Cray cluster. The new algorithm

allows one to perform large calculations with thousands of basis functions in a matter of

hours on a single workstation. While traditional MP2 calculations are frequently eclipsed

by density fitting and resolution of the identity methods, the approaches and lessons

learned in the implementation presented here are applicable beyond the MP2 algorithm.

1. Introduction

The integral transformation, also known as the 4-index transformation, is required for

many electronic structure computations, including methods that include electron

correlation and the analytic computation of energy second derivatives. Of particular

interest in the present work is the use of this transformation in second order perturbation

theory (called MP2 for second order Moller-Plesset or MBPT2 for second order many

body perturbation theory). In general, the 4-index transformation typically transforms

atomic integrals to molecular integrals via the simple formula:

() () () () ()()
p q r s

ij kl C i p C j q C k r C l s pq rs (1)

Using a common convention, occupied molecular orbitals (o) are designated by indices

i j , virtual molecular orbitals (v) are designated by indices a b , and atomic

orbitals (n) are designated by indices p q r s.

Typically, several classes of molecular integrals are needed, e.g., ()ai bj , ()ab ci , etc.

www.manaraa.com

49

In the particular case of MP2, one only needs ()ai bj integrals to compute the amplitudes

and energy, respectively:

2() ()ab

ij

i j a b

ai bj bi aj
t (2)

2 ()ab

MP ij

ab ij

E t ai bj (3)

In Eq. (2) the denominator contains the orbital energies for the occupied and virtual

molecular orbitals (MOs). Note that only the ()ai bj integrals (sometimes called (vo|vo)

integrals) are needed to form the ab

ijt MP2 amplitudes and the MP2 energy. The ()ai bj

integrals, and consequently the t amplitudes have symmetry such that () ()ai bj bj ai

which can be used to halve the storage requirements and the number of computations.

The MP2 energy calculation scales as ON 4 and requires 2 2O V integral storage, where N,

O, and V refer to the number of atomic basis functions, the number of occupied MOs and

the number of virtual MOs, respectively. The MP2 method is the least computationally

demanding many-body method; it is also the many body method with the lowest compute

to I/O ratio.

A number of different MP2 algorithms have been developed over the years
1-6

, due to the

simplicity of the method and its popularity. The above methods all have advantages and

shortcomings. One of the early algorithms is the serial direct method
1
; the integrals are

computed on-the-fly and the algorithm does not require any storage other than core

memory. However, if the storage required is greater than the available memory, the

integrals must be re-evaluated, making the algorithm expensive. The semi-direct serial

algorithm
2

avoids integral re-evaluation by storing partially transformed integrals.

However, the algorithm does not scale beyond a few hundred basis functions. The

parallel direct method
3
 scales well as it requires little communication, but it comes at a

very high cost of recomputing the integrals. The distributed memory algorithms
4-6

 run in

parallel, and, using distributed memory to store partially transformed integrals, avoid

recomputing the integrals. However, the I/O overhead is high due to poor data locality

and the core memory overhead limits the size of the problem, in terms of the numbers of

basis functions and occupied orbitals. Furthermore, the algorithm
6
, which is implemented

www.manaraa.com

50

in GAMESS
7
, lacks efficiency, because the innermost loops have an unfavorable

structure and do not use optimized math routines. The GAMESS disk-based parallel

algorithm
8
 is a recent improvement over the previously developed algorithms: it has

favorable I/O patterns, fast execution, and low memory overhead. Its only drawback is

the reliance on fast disk, which is often not available on large clusters with only network

file systems.

The aim of the present work is to improve the MP2 algorithm according to the following

guidelines:

 Keep the number of operations low and use optimized math libraries to carry out

all integral transformations.

 The memory overhead must be low enough to allow computations with several

thousand basis functions and several hundred occupied orbitals on current

computer hardware. This means that per-core memory overhead must not be

more than a gigabyte or two.

 The algorithm must be adaptable to using either a file system or distributed

memory as a storage medium. Furthermore, the algorithm should be able to run

efficiently on systems with various memory, storage, and interconnect

configurations.

 The I/O overhead must be low enough to run off a network file system efficiently

With these guidelines in mind, a new algorithm is developed that runs at least as fast as

the current fastest parallel implementation
8
, runs equally well on a single workstation and

a 1024-core Cray XE6 cluster, can use either disk or distributed memory storage, and can

handle an input problem of more than 4000 basis functions.

2. Matrix chaining

There exists a simple matrix multiplication property
9
, which, surprisingly, is not very

well-known in computational chemistry. Given three (or more) matrices (e.g., B, C, D),

the matrices can be multiplied without changing the outcome by two different orders:

 ()A BC D (4)

()A B CD (5)

At first glance, the above fact may appear to be uninteresting, until one considers the

number of operations required for the two expressions. Suppose, for example, that the

www.manaraa.com

51

general dimensions are ()B k l , ()C l m , ()D m n , and ()A k n . The number of operations

are ()klm kmn and (lmn kln) for Eqs. (1) and (2), respectively. Of course, if B, C, and

D are all square matrices with the same dimension, there is no difference between

()klm kmn and (lmn kln).

The difference in the number of operations that are required for Eq. (4) vs. Eq. (5) can be

exploited to dramatically reduce the number of operations in integral transformations.

Note that the un-factorized 4 2 2N O V complexity of the integral transformation in Eq. (1)

can be reduced to either 14N O or 4 1N V by doing one transformation at a time at the cost

of the storage of partially transformed intermediates. Similar to the multiplication

schemes described by Eqs. 4 and 5, the integral transformation can be applied in different

orders. Suppose, for example, the integral transformation is applied in the naive left-to-

right order, virtual index first:

(ai | bj)
s

C(j,s)
r

C(b,r)
q

C(i,q)
p

C(a, p)(pq | rs) (6)

Then, the total number of operations is:

 VN 4 VON 3 V 2ON 2 V 2O2N VN(N 3 ON 2 VON VO2) (7)

On the other hand, if the transformation is applied occupied index first,

(ij | ab)
r

C(b,r)
p

C(a, p)
s

C(j,s)
q

C(i,q)(pq | rs) (8)

 then the number of operations is:

 ON 4 O2N 3 VO2N 2 V 2O2N ON(N 3 ON 2 VON V 2O) (9)

The expressions in Eqs. (7) and (9) differ by a factor V O . For correlated calculations,

one expects V O . Therefore, the computational savings obtained by using Eq. (8)

rather than Eq. (6) can be significant. The second benefit comes from a reduced memory

requirement. Since the first two (inner) transformations contract the first two atomic

indices to occupied indices, rather than one virtual/one occupied, the entire tensor is

reduced to (o o n n) storage, rather than the much larger (v o n n) storage. For example,

with an (H2O)19 water cluster and the aug-cc-pVQZ basis set, the ratio of the two

www.manaraa.com

52

approaches is 12.3 times with respect to the number of operations and memory.

3. General Algorithm Considerations

To have a scalable algorithm, special attention needs to be paid to the memory footprint,

the I/O patterns, and the I/O optimization by means of aggregation of smaller transfers

into larger blocks.

3.1. Memory

The algorithm must have a small memory foot print, under 1GB per core on current

hardware, even for large computations with several thousand basis functions. In terms of

basis functions and shells, the memory overhead must be on the order of 2 2M O , where M

is some adjustable blocking factor, for example the size of the largest shell in the basis

set. Otherwise, any significant computation would require nodes with ten or more

gigabytes of memory per core. For example, a computation with 3000 basis functions and

300 occupied orbitals would require 22GB per core if memory were to scale as 2N O .

The blocking factor must be adjustable to adapt to computers with different number of

cores and memory.

3.2. I/O Considerations

For any significant problem size, the sizes of the integral arrays are too great to store in

core memory. GAMESS, for example has several MP2 algorithms, two of which are

parallel disk-only
8
 and distributed memory

6
 implementations. However, using modern

programming techniques, the same algorithm can be adapted to both disk-based and

distributed memory-based approaches. The efficient access patterns between distributed

memory and disk are the same: large contiguous transfers are preferred. Typically, a disk-

based method has much worse throughput than one that is based on distributed memory.

If an algorithm works well with disk, it is guaranteed to work well with distributed

memory, even when running over slow Ethernet networks. The general efficacy for using

disk has been outlined by Ford, Janowski and Pulay
10

: An important consideration is that

individual research groups may not have access to computers with large memory, but

access to workstations with large fast disks is very common. There is one important

detail: due to buffering, writes tend to be significantly faster than reads. Therefore,

algorithms that both read and write large datasets should be optimized in favor of the read

operations.

www.manaraa.com

53

The storage access latency can be hidden by overlapping I/O and computations. This can

be accomplished either by having a number of threads perform computations and I/O

independently of one another, or by having a single I/O thread perform data transfers

while the other thread performs computations.

Implementation transparency; e.g., distributed memory or file implementation, is easily

accomplished using polymorphic functions; i.e., function calls that may resolve to two or

more implementations during runtime without affecting the logic of the caller. For

example, the MP2 program would choose to use distributed memory if enough is

available; otherwise it would default to the file system backend. But regardless of the

runtime decision, the algorithm itself and its implementation would be exactly the same.

In C++, the language of the present implementation, this is done using virtual

functions.

3.3. File I/O considerations

Two file formats, HDF5
11

 and NetCDF
12

, and their corresponding libraries allow easy

manipulation of multidimensional scientific data on a file system. For the purpose of

implementing dense tensor storage, the two file formats are comparable in performance

and capabilities.

Storing data on a single node is straightforward. However, parallel storage requires a

parallel file system. There are a number of parallel file systems, for example PVFS
13

 and

Lustre
14

. PVFS is an easily configurable file system, suitable for local clusters. Lustre is a

more complicated file system, found for example on large Cray computers. Regardless of

a particular file system, the principle is similar to that of RAID0
15

 an entire file is striped

over a number of I/O nodes. The performance of a parallel file system primarily depends

on the stripe size and the number of I/O nodes. Both HDF5 and NetCDF have parallel I/O

capabilities.

4. Naive Approach

A simple MP2 approach is described in Listing 1.

www.manaraa.com

54

allocate V(O*O/2,N,N); // (ia|jb) storage
for S in Shells {

 for Q <= S {
 for R in Shells {
 for P in Shells {

 // skip insignificant ints
 if (!screen(P,Q,R,S)) continue;
 t1(i,R,Q,S) = eri(P,Q,R,S)*C(i,P);
 }

 t2(i,j,Q,S) = t1(i,R,Q,S)*C(j,R);
 }
 // exploit symmetry

 V.store(t2(ij,Q,S));
 V.store(t2(ji,S,Q));
 }
}

// 3rd index
for s in N {
 t2(ij,Q) = V(ij,Q,s); // load NO^2 tile

 t3(ij,a) = t2(ij,Q)*C(a,Q); // transform
 V(ij,a,s) = t3(ij,a)); // store VO^2 tile
}
// 4th index + energy computation

for a in V {
 t3(ij,S) = V.load(ij,a,S); // load NO^2 tile
 t4(ij,b) = t3(ij,S)*C(b,S); // transform
 E += Energy(t4); // evaluate energy

}

Listing 1. Naive approach

The main points about the simple implementation are:

 The integral symmetry is exploited in the Q, S shells. The half transformed

integrals 2t are written as triangular matrices, i j , as well as its transpose j i .

If one is running on multiple cores, each Q, S pair can be evaluated independently,

allowing one to benefit from overlapping computation/write.

 The integral computation and first index transformation are screened using

the Schwarz method. Subsequent transformations are not screened.

 The matrix transformations can be done using the BLAS matrix routine.

Several shells can be transformed at the same time to increase efficiency. The

temporary memory is on the order of 2 2()O M .

 The 3rd transformation is straightforward. The required temporary

www.manaraa.com

55

memory is 2(2)O N where N is the number of basis functions.

 The fourth transformation requires noncontiguous read. As mentioned

above, the disk is not efficient enough to handle noncontiguous read. For a large

problem, the 4th step (i.e., the 4
th

 index transformation) becomes increasingly

slow, rendering this approach extremely inefficient.

5. Better Algorithm

What is desired is an algorithm that still exploits symmetry and is also able to load

integrals with untransformed indexes contiguously to maximize throughput. Suppose the

half-transformed integrals 2t are stored as a 2()t N N ij array, where N is the number

of basis functions, and i, j index the already transformed occupied molecular orbitals.

Then, it would be a simple matter of reading contiguous blocks corresponding to an

occupied index, transforming these blocks, and evaluating the energy, all at the cost of a

single read. Note that the quantity N N is relatively small, only 200MB for 5000 basis

functions.

The problem is then how to write such data efficiently since it is generated as a ()ij Q S

shell pair at the time. Writing individual shell pairs Q, S at a time to form a ()QS ij set is

inefficient. For example, in the case of an s-shell pair, it would require a long

noncontiguous write. However, to generate the occupied transformation, very little

memory is needed. This fact can be exploited to evaluate and to write a block of 2M

functions at a time. For example, assuming 500 occupied orbitals, the working memory

required is 1MB per shell function. Therefore, a block 2M of 256 functions (e.g. 16 sp-

shell pairs) requires only 256MB, but those 16 separate writes can now be aggregated into

a single large write. By writing ()QS ij and its symmetric transpose ()SQ ji next to each

other, the contiguous section of the write can be further doubled.

The fact that the virtual index transformation is also relatively small in terms of memory

can be used to further improve the I/O. If an entire node has 2 GB of memory, 10

()Q S ij blocks can be loaded at once. This means the tensor storage can be re-

dimensioned from 2(2)N N O to 2((2))B N N O B , with 10B in the example

considered here, and consequently the writes can now be ()B QS ij B , with atomic and

www.manaraa.com

56

occupied orbitals interleaved. If 2 2B O then the algorithm can be performed in-core.

The graphical depiction of the access patterns is outlined in Figure 1.

Figure 1. Integral access patterns.

(a)
Thread put (shaded) refers to thread I/O to build half-transformed integrals using blocking and

symmetry.

(b)
Node get (shaded) refers to node-wide I/O to retrieve a contiguous block of half-transformed

integrals.

Combining the above ideas, one can develop the following algorithm, Listing 2, which

has contiguous writes of size 2(2)M B and reads of size 2()N B , with M and B

factors determined by setting runtime memory limits.

www.manaraa.com

57

B = ...; // some blocking factor, according to available memory
allocate V(N*N*B, (O^2/2)/B);

// loop over QS pairs in blocks of M functions
for (S,Q) in Blocks(Q <= S, M) {

 for R in Shells.blocks { // loop over R shell blocks
 for P in Shells.blocks { loop over P shell blocks
 // compute ERIs, screening out insignificant integrals

 eri.screen(P,Q,R,S));
 t_(i,S,R,Q) = eri(S,R,Q,P)*C(i,P); // 1st transform
 t1(i,S,Q,R) += t_(i,S,R,Q);
 }

 t2(j,i,S,Q) = t1(i,S,Q,R)*C(j,R); // 2nd transform
 }
 t(QSB,ij/B) = t2(j,i,S,Q); // the shell order is scrambled

 V(QSB,ij/B) = t(QSB,ij/B); // write block
 V(SQB,ji/B) = t(QSB,ij/B); // and symmetrical transpose
}
// 3+4 index transformation and energy

for ij in (O^2/2)/B { // loop over occ. blocks
 t(QSB) = V(QSB,ij); // load scrambled untransformed block
 for (i,j) in B { // loop over occ. indices

 t2(Q,S) = t(QS(i,j)); // unscramble shell order
 t3(a,S) = t2(Q,S)*C(a,Q); // transform
 t4(a,b) = t3(a,S)*C(b,S);
 E += Energy(t4); // compute energy

 }
}

Listing 2. Better approach

The main points regarding the above implementation are:

 The integral symmetry is exploited in the Q,S shells. The half-transformed

integrals are written independently and can be computed in parallel.

 The Q, S list is processed in terms of blocks of shell pairs, rather than

individual shell pairs. The optimal block size will depend on the available

memory. The bigger the block size, the better in general.

 The transformed integrals are scrambled such that shells are interleaved

with blocks of ij indices of size B. The contiguous size of this noncontiguous

write is 22 M B .

www.manaraa.com

58

 The transformation of the 3
rd

 and 4
th

 indexes reads the contiguous

interleaved blocks. The shell order is unscrambled one occupied pair at a time, the

unscrambled block is transformed and the corresponding energy is computed.

 The read operation to fetch the next block can be overlapped with the

computations.

The two innermost transformations are responsible for most of the computational work,

therefore it is important to have these two as efficient as possible in terms of performance

and memory footprint. For any given shell pair ()q s , the entire ()P R electron repulsion

integral (ERI) list is evaluated in terms of blocks of identical shells, to minimize integral

initialization overhead. Each individual block is contracted to the first occupied index.

Once a given R block is finished, it is then transformed to the second occupied index.

Each transformation can be carried out using dgemm, making sure that the screened out

integrals are absent from the transformation.

6. Performance

A number of benchmarks are useful to judge the performance, scalability, and flexibility

of the algorithm:

 How does the new approach compare with similar algorithms?

 How does the network interface affect performance?

 What is the relative time spent in ERI, transformations, and I/O?

The two computer systems used to carry out the benchmarks are:

 Exalted, an Intel cluster connected by InfiniBand (IB). Each node has one 6-core

Intel X5650 processor, 24 GB of RAM, one Fermi C2050 graphics processor, and

two hard drives in a RAID0 configuration.

 Cray XK6, with Gemini interconnect. Each node has two 16-core AMD 6200

processors, 64 GB of RAM; Lustre parallel file system, 8 I/O nodes.

All inputs used to carry out the benchmarks are listed in Table 1 together with the storage

required for the half-transformed integrals. The new implementation is referred to as

MP2++ for clarity.

www.manaraa.com

59

Table 1. Benchmark Specifications

Input # Basis

functions

Occupied

Orbitals

Virtual

Orbitals

Storage

Required

(GB)

Taxol/6-31G 660 164 434 47

Taxol/6-31G(d) 1032 164 806 115

Taxol/cc-pVDZ 1185 164 959 151

Taxol/aug-cc-pVDZ 2009 164 1659 434

19H2O/aug-cc-pVTZ 1995 76 1653 92

Valinomycin/cc-PVTZ 4080 222 3300 3300

First, compare the performance of the new MP2++ CPU-based algorithm to the DDI and

IMS implementations in GAMESS on the Exalted cluster connected by InfiniBand. The

two inputs are a Taxol molecule, with the small 6-31G and the larger 6-31G(d) basis set,

shown in Table 2. Due to the distributed memory (DM) requirement, the DDI algorithm

cannot even run on a single node unless the input (i.e., basis set) size is very small.

Furthermore, the DDI code is slow compared to both the IMS algorithm and the new

implementation, by more than a factor of 10. Furthermore, the DDI MP2 memory

requirement scales as 2ON making it difficult to perform large calculations: A problem

larger than 1000 atomic basis functions would require more than 1GB of local memory

per core, leaving little room to scale.

Table 2. Exalted Benchmarks, compared to DDI
6
 and IMS

8
.

Input Cores/Nodes Algorithm Storage/Network Time(mins)
*

Taxol/6-31G 24/4 DDI DM/IB 39.7

IMS Disk/IB 3.7

MP2++ DM/IB 3.1

Taxol/6-31G(d) 36/6 DDI DM/IB 86.3

IMS Disk/IB 7.5

MP2++ DM/IB 5.4

Taxol/cc-pVDZ 6/1 IMS Disk/IB 116.6

MP2++ Disk/IB 76.0

60/10 IMS Disk/IB 12.7

MP2++ DM/IB 7.9
(1)

DM/1Gbe 19.3

(H2O)19/aug-cc-pVTZ 6/1 IMS Disk/IB 858.5

MP2++ Disk/IB 498.3

60/10 IMS Disk/IB 121.0

MP2++ DM/IB 49.9
(2)

DM/1Gbe 54.5

* Superscripts
(1),(2)

 refer to computation breakdown, shown in Table 3.

www.manaraa.com

60

The next set of benchmarks, to illustrate the advantage of the new approach over the IMS

algorithm, are Taxol/cc-pVDZ and (H2O)19/aug-cc-pVTZ, given in Table 2. The first

example, Taxol/cc-pVDZ, is less computationally intensive but requires 50% more

storage (and consequently I/O), whereas the second example, (H2O)19/aug-cc-pVTZ, is

computationally heavy due to the presence of diffuse functions. The new implementation

is a clear improvement over the existing IMS disk algorithm, especially when diffuse

functions are present, being faster by almost a factor of two. The new implementation

scales on a small cluster, even when running over the 1Gbe Ethernet interface. The more

I/O bound Taxol/cc-pVDZ calculation performance deteriorates quickly. For the

computationally heavy water cluster input, the difference between Ethernet and

InfiniBand is about 10%.

Table 3. Exalted Parallel Benchmarks Breakdown. All values are the percentage of

the total runtime.

Benchmark ERI T1 T2 WRITE READ T3+T4 sync

(1) 38.2 28.9 6.2 0.77 0.37 23.7 1.9

(2) 39.3 45.5 6.1 0.003 0.7 4.0 4.4

The breakdown of each step in the Taxol/cc-pVDZ and (H2O)19/aug-cc-pVTZ

calculations is given in Table 4: T1-T4 are the transformation steps and sync is the overall

synchronization time. In both cases the integral calculation (ERI) accounts for a

significant fraction of the total run time. The water cluster calculation has almost all of its

work concentrated in the integral and first transformation (T1) part due to much less

screening (because of the diffuse functions in the basis set), as opposed to the sparser

integral set in the Taxol calculation. In both cases, the total I/O (WRITE and READ)

accounts for around 1% of the total run time. If the computational power were to

suddenly increase, the algorithm would still be viable due to the low I/O overhead.

The next set of benchmarks illustrates the capability of the algorithm on a large cluster, a

Cray XE6. Two inputs are used, Taxol/aug-cc-pVDZ and Valinomycin/cc-PVTZ.

The timings are given in Table 4 and the overhead of each step in is given in Table 5.

When considering the timings given below, is important to keep in mind that the numbers

are for one thread only and do not give a definitive picture of the entire computer system;

the other threads across nodes may very well have significantly more or less I/O time.

www.manaraa.com

61

Table 4. Cray Benchmarks.

Input Cores/Nodes Storage Time (mins)
*

Taxol/aug-cc-pVDZ 512/16 Lustre 63.9
(1)

512/16 DM 52.5
(2)

1024/32 DM 25.3
(3)

Valinomycin/cc-PVTZ 256/8 Lustre 313.8
(4)

512/16 Lustre 204.6
(5)

* superscripts
(1-5)

 refer to computation breakdown, Table 5.

Table 5. Cray Parallel Benchmarks Breakdown. All values are the percent of total

runtime.

Benchmark Eri T1 T2 WRITE READ T3+T4 sync

(1) 14.1 52.8 10.0 0.1 3.5 5.5 14.0

(2) 17.2 53.1 15.4 0.1 0.1 8.1 6.0

(3) 18.2 40.6 9.9 0.1 0.1 8.4 22.7

(4) 17.8 16.4 18.0 9.3 17.5 18.2 2.8

(5) 7.2 20.5 16.3 18.1 7.1 28.3 2.5

The smaller Taxol/aug-cc-pVDZ computation storage is small enough to fit in distributed

memory (DM). The run with Lustre storage takes longer; this can be expected considering

that the system has a 64:1 compute to I/O node ratio. When running in distributed

memory entirely, the I/O overhead is hardly noticeable, due to the fast Gemini

interconnect. The super-linear speed-up is most likely due to the cache effects of reduced

memory pressure on individual nodes.

The larger computation, Valinomycin/cc-PVTZ, requires 3.3TB, which is beyond the

aggregate memory of the system. The half-integral file is stored on the Lustre file

system, with the striping size set to 32MB. For this computation the I/O overhead is

significant, on the order of 25%, again due to more effective integral screening in the

absence of diffuse functions. The scalability suffers as well, both due to more I/O and an

unfavorable 64:1 ratio of cores to I/O nodes when running on 512 cores. Nevertheless,

running the calculation that would otherwise require around 2000 cores just to complete

the job illustrates the efficacy of the new algorithm with its flexible memory/file system

storage.

www.manaraa.com

62

7. GPU Implementation

There is considerable interest in porting core quantum chemistry algorithms to take

advantage of the graphical processor unit (GPU) architecture. A previous report by the

authors demonstrated reasonable performance for a GPU C++ Hartree-Fock (HF) code,

compared to the best C++ CPU code as a benchmark
16

. The speedup of the C++ GPU

algorithm relative to the standard FORTRAN77 HF code in GAMESS was shown to be

much better, as one would expect when comparing a modest legacy code to a much newer

algorithm that takes advantage of modern computer architectures.

With regard to a C++ GPU MP2 code that employs the new algorithm described here,

consider the following points regarding the innermost MP2 implementation kernels:

 The integral block evaluated at any given time is relatively small, to keep

the memory footprint low.

 The integrals are screened, therefore the coefficient matrix needs to be

repacked according to the block-sparse structure of the integral block.

 The first transformation is a series of relatively small matrix-matrix

multiplications.

While the CPU can handle the above tasks efficiently, the GPU runtime is inefficient at

handling many small tasks, rather than a few large tasks. As a result, the GPU is poorly

utilized, even if one uses multiple streams to run several small kernels simultaneously.

Table 6 presents the GPU speed-ups relative to the C++ CPU times discussed above. All

benchmarks were carried out on the Exalted nodes. Even though the GPU times are very

good relative to the current DDI and IMS algorithms (see Tables 1-3 above), the speed-

ups relative the new C++ CPU code is disappointing for the reasons outlined above. The

highest performance gain is less than 5%. Although the overall performance of the

algorithm is superior to the algorithms in the current GAMESS code, this is primarily due

to the new (better) algorithm implementation, rather than to the raw performance of the

GPU.

Table 6. GPU. All times are in minutes.

Input Cores/GPUs No GPU time With GPU time Speed-up
a

www.manaraa.com

63

Taxol/6-31G 24/4 3.1 3.4 -8%

Taxol/6-31G(d) 48/8 5.3 5.4 -2%

Taxol/cc-PVDZ 60/10 9.5 9.3 +2%

(H2O)19 60/10 49.9 48.9 +2%

a. Speedup relative to C++ GPU algorithm.

The only place where GPU math libraries could make a difference is in the last two

transformations, in which the bulk of the work is handled by two large consecutive matrix

multiplies. However the last two index transformations do not account for enough of the

runtime, 30% at most in the above examples. Therefore, speeding up those parts of the

computations is unlikely to significantly improve the overall performance.

It is important to stress that the above finding does not mean that an efficient MP2 GPU

algorithm is not possible. However, to achieve good GPU utilization, an approach

significantly different from that taken in the present work is needed. This is in contrast

with RI-MP2 GPU implementations
17

, in which the bulk of the work is handled by few

large matrix multiplies without the need to accommodate the sparse nature of two-

electron integrals directly.

8. Conclusions

The work described in this paper offers an improvement over existing MP2 energy

algorithms, both in terms of execution time and resource utilization. A flexible data

storage model allows one to transparently use either a file system or distributed memory

to store partially transformed integrals. A number of sample calculations demonstrate that

the new approach works well with small clusters and can also scale to a thousand cores on

a Cray supercomputer. However, translating the new C++ CPU approach into a GPU

implementation proved to be unsuccessful, since the GPU runtime does not handle the

workload composed of large number of small computations efficiently.

Acknowledgements. This work was supported in part by funding from the Nvidia

Corporation and the National Science Foundation (Petascale Applications project). The

(H2O)19 geometry was provided by Dr. Spencer Pruitt.

References

1. Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct

methods. Chem. Phys. Lett. 1988, 153, 503–506.

www.manaraa.com

64

2. Frisch, M.J.; Head-Gordon, M.; Pople, J.A. Semi-direct algorithms for the MP2

energy and gradient. Chem. Phys. Lett. 1990, 166, 281–289.

3. Wong, A.T.; Harrison, R.J.; Rendell, A.P. Parallel direct four-index transformations.

Theor. Chem. Acc. 1996, 93, 317–331.

4. Nielsen, I.; Seidl, E.T. Parallel direct implementations of second-order perturbation

theories. J. Comput. Chem. 1995, 16, 1301–1313.

5. Schütz, M.; Lindh, R. An integral direct, distributed-data, parallel MP2 algorithm.

Theor. Chem. Acc. 1997, 95, 13–34,

6. Fletcher, G.D.; Rendell, A.P.; Sherwood, P. A parallel second-order Møller-Plesset

gradient. Mol. Phys. 1997, 91, 431–438.

7. Gordon, M.S.; Schmidt, M.W.; Advances in electronic structure theory: GAMESS a

decade later, Theory and Applications of Computational Chemistry: the first forty years;

Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E., Eds., Elsevier, Amsterdam, 2005,

1167-1189

8. Ishimura, K.; Pulay, P.; Nagase, S. A new parallel algorithm of MP2 energy

calculations. J. Comput. Chem. 2006, 27, 407–413.

9. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms;

MIT Press and McGraw-Hill, 2001, MA, 331-338.

10. Ford, A.R.; Janowski, T.; Pulay, P. Array files for computational chemistry: MP2

energies. J. Comput. Chem. 2007, 28, 1215–1220.

11. The HDF Group. Hierarchical Data Format, version 5.

http://www.hdfgroup.org/HDF5 (accessed Oct 6, 2012)

12. Network Common Data Form. http://www.unidata.ucar.edu/software/netcdf/

(accessed Oct 6, 2012)

13. Lustre. http://lustre.org/ (accessed Oct 6, 2012)

14. Parallel Virtual File System, version 2. http://pvfs.org/ (accessed Oct 6, 2012)

15. Patterson, D.A.; Gibson, G.; Katz, R.H. A case for redundant arrays of inexpensive

disks (RAID). SIGMOD Rec. 1988, 17, 109–116,

16. Asadchev A.; Gordon, M. S. New Multithreaded Hybrid CPU/GPU Approach to

Hartree-Fock. J. Comp. Theor. Chem. accepted.

17. Watson, M.; Olivares-Amaya, R.; Edgar, R.G.; Aspuru-Guzik, A. Accelerating

correlated quantum chemistry calculations using graphical processing units. Comput. Sci.

Eng. 2010, 12, 40–51.

www.manaraa.com

65

Chapter 4. A Novel Approach to CCSD(T)

Andrey Asadchev and Mark S. Gordon

Department of Chemistry

Iowa State University and Ames Laboratory

www.manaraa.com

66

Ames, IA 50011

Abstract

A new coupled cluster singles and doubles with triples correction, CCSD(T), algorithm is

presented. The new algorithm is implemented in C++, has a low memory footprint, fast

execution time, low I/O overhead, and a flexible storage backend with the ability to use

either distributed memory or a file system for storage. The algorithm is demonstrated to

work well on single workstations, a small cluster, and a high-end Cray computer. With

the new implementation, a CCSD(T) calculation with several hundred basis functions and

a few dozen occupied orbitals can run in under a day on a single workstation.

1. Introduction

As a rule of thumb, the electronic energy obtained with the Hartree-Fock method

accounts for ~99 % of the energy. However, many chemical properties of interest are

dependent on the remaining 1 %, frequently called the electron correlation energy, or

simply the correlation energy. The correlation energy is defined as the difference between

the reference Hartree-Fock energy and the true energy,

 corr hfE E E
 (1)

Of the many electron correlation methods [1-3], the coupled cluster (CC) method is one

of the most successful. The coupled cluster method was first developed by nuclear

physicists [4], adapted to quantum chemistry by Cizek, Paldus, Shavitt, Mukherjee,

Schaefer, and others [5-9] and especially popularized by Bartlett [10].

 The iterative singles and doubles coupled cluster (CCSD), plus triples that are included

perturbatively [11], CCSD(T), method is the most popular approach, often referred to as

the gold standard of computational chemistry, among the several other higher-order

methods [12].

The coupled cluster method is usually introduced in the exponential ansatz form [13],

 1 2()

0 0
nT T TTe e

 (2)

where
1 nT T are the n-particle cluster operators and 0 is the reference wavefunction,

www.manaraa.com

67

typically the Hartree-Fock reference
hf

.

The excitation operator applied to a reference wavefunction is written in terms of cluster

excitation amplitudes t from hole states i j k (occupied orbitals in chemistry

parlance) to particle states (or virtual orbitals), a b c

T
n 0

ijk abc

t
ijk

abc

ijk

abc

 (3)

Truncating the expansion at doubles, leads to the approximate coupled cluster singles and

doubles method, CCSD,

T T

1
T

2 (4)

The singles a

it and doubles ab

ijt amplitudes are found by solving a system of nonlinear

equations,

<

i

a (H
N
e

T
1

T
2) > 0

 (5)

<

ij

ab (H
N
e

T
1

T
2) > 0

 (6)

where , ,a ab

i ij are, respectively, the reference determinant, and the singly and doubly

excited determinants, and

H

N
H < H > is the normal order Hamiltonian [13],

constructed so that its reference energy is zero.

The final algebraic CC equations, derived using a diagrammatic approach, result in a

number of integral terms V contracted with T amplitudes. For example, 2

1VT signifies

integral terms contracted with
a b

i jt t . The complete derivation can be found in a number of

sources [14]. For the purposes of this work, the spin-free equations by Piecuch and co-

workers [15] are used.

The algebraic CC equations are presented in Einstein summation terminology, in which

repeated co- and contra-variant indices; e.g., the index s in Xs
rYt

s or the index r in Xs
rYr

t

imply summation. For the following discussion, define the one-electron integrals

f

q

p < p f q > , the two-electron molecular integrals | |pq

rsv pqv rs , and the

many-body denominatorspr q s p

qs q s p

r

rD f f ff for an arbitrary number of

www.manaraa.com

68

orbitals. Now, the CCSD non-linear equations may be expressed as follows:

(2) (2)

(2) (2)

a a a a e a m ea ea e ma amm
ii i i e i m e mi im m ei ei

mn ea ae ma ef ef

ei mn mn ef mi im

D t f I t I t I t t t v v

v t t v t t
 (7)

1 1
()[

2 2

(2)]

ab ab ae b ab m ab ef ab mn

ij ij ij e im j ef ij mn ij

ae mb ma eb ea ea mb e aab mb
ej ijmj ie ie mj mi im ej i m

ab

ijD t v P ia jb t I t I v c c I

t I I t t t I t I t I

 (8)

In Eqs. (7) and (8), the intermediates , , 'c I I are defined as

I

a

i f
a

i 2v
ae

imt
m

e v
ea

imt
m

e (9)

I

b

a (1
a

b) f
b

a (2v
be

amt
m

e v
be

mat
m

e) (2v
eb

mnc
mn

ea v
be

mnc
mn

ea) t
m

a f
b

m (10)

 i i ei
jj e jI I tI (11)

 (1) (2) (2)i i im e im e mi ef im efi
j j j je m ej m ef mj ef mjf v t v t v t v tI (12)

 ()ij ij ij ef e ij

kl kl ef kl k elI v v c P ik jl t v (13)

I

jb

ia v
jb

ia 1

2
v

eb

imc
jm

ea v
jb

imt
m

a v
eb

iat
j

e
 (14)

I ci

ab
 v

ci

ab v
ci

amt
m

b t
m

av
ci

mb (15)

I jk

ia
 v

jk

ia v
ef

iat
jk

ef t
j

et
k

f v
ef

ia (16)

ij i j ij

ab a b abt tc t

In the foregoing, the permutation operator P ,

P(ia jb)u

ab

ij u
ab

ij u
ba

ji

 (17)

has the effect of symmetrizing an arbitrary operand u , such that,

P(ia jb)u

ab

ij P(ia jb)u
ba

ji

 (18)

The integrals over molecular orbitals are obtained from the integrals over the atomic

orbital (AO) basis via the 4-index transformation,

v

cd

ab C
p

aC
r

bC
c

qC
d

s < pq
1

r
rs >

 (19)

www.manaraa.com

69

The coefficients C in Eq. (19) are obtained from the iterative Hartree-Fock procedure.

The transformed integrals have the following general symmetries,

bs as

ar br
v v

 qs sq

ab bav v

The (T) correction is given as:

E[T]

abc

ijk
t t

ijk

abcD
ijk

abc (20)

E(T) E[T] t

ijk

abcD
ijk

abc

abc

ijk
z (21)

An arbitrary quantity ijk
abcx is defined as

abc

ijk
x

4

3
x

abc

ijk 2x
acb

ijk 2

3
x

bca

ijk

 (22)

and

 ()ijk i jk j ik k ij abc

abc a bc b ac c a ijkz t v t v t v b D
 (23)

The 3T amplitudes are,

 ()[]abc abc ae bc ab mc

ijk ijk ij ek im jkD t P ia jb kc t v t v (24)

where the symmetrizer ()P ia jb kc is

P(ia jb kc)u

abc

ijk u
abc

ijk u
acb

ikj u
bac

jik u
bca

jki u
cba

kji u
cab

kij

2. Computational details

The CCSD equations are non-linear and must be solved to self-consistency via an

iterative procedure, usually with the help of an acceleration method [16]. The CCSD

method is dominated by its most expensive term, ab ef

ef ijv c , which scales as 4 2v o , where v, o

are the number of virtual and occupied molecular orbitals, respectively. Formally, the

method is expensive in terms of memory and storage as well, with amplitude storage on

the order of 2 2v o and integral storage on the order of v
4 v3o and so on. The amount of

in-core memory depends on the specific algorithm used; most algorithms require 2 2v o

storage per node. This amount of memory is not scalable. For example, a problem with

100 occupied and 1000 virtual orbitals would require 80GB of memory per node, which

www.manaraa.com

70

is not commonly available.

The non-iterative (T) correction requires 3v o storage and scales as 4 3v o . A naive (T)

algorithm is trivial to implement but an algorithm that has a small memory requirement

and scalable I/O is more challenging.

There is a CCSD(T) method in nearly every quantum chemistry package. The ACES [17]

and NWChem [18] implementations can handle very large computations, provided that a

supercomputer is available [19]. The MOLPRO [20] algorithm has an 2 2o v memory

requirement, which limits its utility, but it is perhaps the fastest algorithm for smaller

calculations. The GAMESS [21] implementation runs in parallel but is similarly limited

by an 2 2o v memory requirement. The Janowski, Ford, Pulay disk array CC

implementation [22] can handle large computations of the order of a thousand basis

functions on a commodity cluster by utilizing a filesystem for storage, but the

performance of their algorithm is limited by disk I/O.

3. Design of a Scalable and Efficient Algorithm

In a previous paper, an MP2 energy algorithm was discussed [23], which has a small

memory footprint, good performance, a flexible storage implementation, and is able to

run on workstations and clusters equally well. In the same spirit, a coupled cluster

algorithm can be designed, such that it is efficient, has a small memory footprint, is able

to utilize a filesystem and memory for storage, and as a result can run on machines with

very different capabilities.

For coupled cluster algorithms (and other many-body methods), it is the memory that is

most likely to limit the application of the algorithm. Memory is a limited resource, unlike

the time. Furthermore, the time to completion for calculations can be decreased by

providing more computational hardware, whereas the amount of physical memory per

node cannot be increased by adding another node.

Some very large arrays can (and need to) be distributed across the nodes (distributed

memory) or stored on the filesystem. Disks are inexpensive and offer terabytes of storage,

but filesystem I/O can be very slow if not done right. Nevertheless, a considerable amount

of memory must be present to carry out local calculations.

www.manaraa.com

71

What are the memory limitations of current hardware? A “typical” workstation or a

cluster node in most research groups has between 1GB and 8GB of memory per core,

with 2GB of RAM probably the most common. For an entire node, the amount of

memory can be as much as 64GB or more, depending on the number of cores/node. That

number will increase in the future, but possibly at a slower rate than the increase in

computational power.

To draw a connection between memory and the dimensions present in CC calculations,

several generic arrays of varying dimensions, corresponding to 100 occupied orbitals and

1000 and 2000 basis functions, are listed in Table 1. The dimensions of these arrays may

correspond, for example, to an entire integral array or to the first three indices. The

algorithm design is then guided by what arrays are small enough to be stored per node or

per core. It should be kept in mind that the sizes listed are not for the entire calculation,

but for one of the several arrays needed. Some of the arrays can be shared, but some must

be allocated per thread/core.

Storing an
2 2o n array per node (let alone per core) is too expensive: A node with 80GB of

RAM is rare and one with 320GB is even more rare. The same is true for the quartic

arrays other than 4o and arrays involving an 2n factor. Storing, for example, several 3GB

arrays would preclude most systems from being able to handle more than a thousand basis

functions. The choice is then to restrict memory requirements to 2o n (or smaller) arrays,

whose size only increases linearly with basis set. Trying to limit memory further than

2o n, to say on , will come at a very high cost of increased I/O.

www.manaraa.com

72

Table 1. Array Sizes for o=100

Array Size (GB), nbasis=1000 Size (GB), nbasis=2000
4o 0.8 0.8

2o n 0.08 0.16

2on 0.8 3.2

3o n 8.0 16.0
3n 8.0 64.0

2 2o n 80.0 320.0
3on 800.0 6400.0

4n 8000.0 128000.0

Some arrays, notably 4n , are too great to store even in secondary storage. The terms

involving such an array must be evaluated directly, i.e. on the fly, at the modest cost of

recomputing atomic integrals, cf. Olson et al [24]. However, to push the ability of the

algorithm beyond a thousand basis functions, 3on storage also must be eliminated in the

CCSD algorithm. To ensure that I/O overhead is low even on filesystems, transfers to and

from secondary storage must be contiguous and in large chunks. There are three basic

remote operations: put, get, accumulate. The last of these cannot be

implemented efficiently via the filesystem I/O and the algorithm must not rely on it.

Finally, to achieve computational efficiency, all of the expensive tensor contractions that

must be carried out using dgemm and tensor permutations must not exceed two adjacent

indices to ensure data locality, e.g., A(j,i,k) = A(i,j,k) is OK, but A(k,j,i) = A(i,j,k) is not,

because the latter has poor memory performance. The work distribution between the

nodes must be over the virtual index rather than the (usually) much smaller occupied

index, to ensure that the algorithm can scale to hundreds of nodes. The work within the

node can be parallelized using threads. This multi-level parallelization guarantees that the

algorithm will scale to thousands of cores.

In the following discussion, the primary focus is on memory, then on secondary storage

and I/O, and only then on the computational aspect. The consequent performance is

illustrated below with benchmarks.

www.manaraa.com

73

4. Implementation

This section is broken into three sub-sections that address the direct CCSD terms, the

non-direct CCSD terms, and the triples correction, respectively. The CCSD component of

the CCSD(T) algorithm is by far the most complex due to the number of terms.

Before proceeding to the respective sections, consider I/O optimization via loop blocking.

In Algorithm 1, B is a blocking factor. If 1B , then it is just a regular loop: the

innermost (most expensive) load operation is executed 3N times, the total I/O overhead is

2 3M N , and the local buffer size is 2M . If B is greater than 1, the innermost load

operation is called 3()N B times, the I/O overhead is 2 3 2 3 2()M B N B M N B , and the

local buffer size is
2M B . So, at the cost of increasing the local buffer size, the I/O

overhead can be reduced by a factor of
2B . In general, loop blocking decreases I/O by

(1)LB where L is the number of nested loops.

The loop blocking will be used where I/O might pose a problem. Since blocking also

requires an increase in memory overhead, the blocking factor can be determined by

setting a runtime memory limit.

for i = 0:N,B { // iterate to N in steps of B
 for j = 0:N,B {
 for k = 0:N,B {

 // the innermost load operation
 buffer(M,M,B) = load A(M,M,k:k+B)
 ...
 }

 }
}

Algorithm 1. Loop Blocking

4.1. Direct Terms

As mentioned already, ab

cdv has to be evaluated directly due to storage constraints. The

same approach can be extended to evaluate terms ia

bcv directly as well at little additional

cost.

To make the notation simpler, the conventional VT notation is used, where the general

www.manaraa.com

74

single and double amplitudes contractions are referred to as 2

21 1,,V VT VTT , the latter

implying contraction with two single amplitudes.

The integral ab

cdv is contracted with
 ij

cd

T
1

2 (T
1
T

1
)

ij

cd t
i

ct
j

d and
2

cd cd

ijij
tT amplitudes,

 2

ab cd s q pr b a

ij d c qs r pij
t C C V C CVT (25)

 2

1

ab c d s q pr b a

i j d c qs r pij
t t C C V C CVT (26)

Half-transforming the amplitudes to the AO basis and factoring out half-contracted terms

yields expressions in terms of half-transformed intermediates U , with subscripts referring

to the T contraction (Recall that p,q,r,s are AO indices.).

 2
()

pr cd s q pr

ij d c qsij
t C C VU (27)

 2

1
()()

pr c q d s pr

i c j d qsij
t C t C VU (28)

 2 2

ab pr b a

r pij ij
C CVT U (29)

 2 2

1 1

ab pr b a

r pij ij
C CVT U (30)

All similar VT terms can be obtained from U at virtually no cost by having the last two

AO indices transformed to occupied and virtual indices. For example, the ia

bcv terms in

Equation (7) are just

 (2) 2ma ef ef qs m a qs m a

ef mi im mi q s im q sv t t U C C U C C
 (31)

The ia

bcv also enter the 1VT diagrams,

 ab

ij
VT

1
t
i

cC
j

sC
c

qV
qs

prC
r

bC
p

a (32)

 jb

ia
VT

1
t
i

cC
d

sC
j

qV
qs

prC
r

bC
p

a
 (33)

and two more intermediates are needed,

 qs

ij
U

1
(t

a

iC
p

a)C
r

jV
qs

pr
 (34)

 js

ir
U

1
(t

a

iC
p

a)C
j

qV
qs

pr
 (35)

which can then be transformed into appropriate 1VT diagrams.

www.manaraa.com

75

Now, if all four U intermediates are available, neither ab

cdv nor ia

bcv need to be stored for

the CCSD iterations; they can be replaced with much smaller
2 24 o n storage.

Half-transformed
2T amplitudes, Eq. (27), also provide a way to devise a direct

contraction algorithm with very little memory requirement. Since the contraction is in the

AO basis, atomic indices can be contracted without having to construct ab

qsV which would

require all atomic basis p r indices and thus 2 2N M memory, where M is the size of the

largest shell. Algorithm 2 only needs 3NM memory.

for S in Shells {

 for Q ≤ S {
 for R in Shells {
 for P in Shells {

 // skip insignificant ints
 if (!screen(P,Q,R,S)) continue;

 // evaluate 2-e integrals(PQ|RS)
 G(P,R,Q,S) = eri(P,Q,R,S);

 }
 for r in R {
 U1(i,j,q,s) = ...

 U12(i,j,q,s) = ...
 load t(o,o,n,r)
 U2(i,j,q,s) += t(i,j,p,r)*G(p,r,q,s)
 }

 }
 store U1(i,j,Q,S), U1(j,i,S,Q)
 store U12(i,j,Q,S), U12(j,i,S,Q)
 store U2(i,j,Q,S), U2(j,i,S,Q)

 }
}

Algorithm 2. Direct CCSD intermediates

The important points of Algorithm 2 are:

 The integral symmetry is exploited to halve the number of integral

calculations and transformations.

 The loop over Q S can be distributed over nodes.

 The loop over R can be parallelized over threads. In this case, the U

storage can be shared, provided the updates to shared memory are synchronized.

www.manaraa.com

76

 The innermost 2t loads can be reduced by blocking the Q S loops (cf. the

discussion on loop blocking).

 Per thread storage is 3NM , which is 16MB for a basis set of size 2000

with f shells (M 10). The local U storage is likewise small, only 8MB for

 o 100 . This tiny memory footprint allows for a very large Q S blocking factor

and consequently the I/O can be dramatically reduced.

Note that both
1UT terms cannot be evaluated simultaneously using the above algorithm,

as they correspond to two different integrals, < pq rs > and < pr qs >. However, one

of them can easily be evaluated by applying the algorithm a second time to compute a

single
1UT term at a very modest 4on computational cost.

4.2. CCSD

Because the singles amplitudes storage is negligible, on , the singles part of the CCSD

code is easy to implement and parallelize. By making a virtual index the outermost index,

the local memory is guaranteed not to exceed 2o n since all of the diagrams with three and

four virtual indices have already been evaluated above.

The doubles amplitudes calculation requires the most effort to implement, primarily due

to the number of contractions and the terms that require significant I/O. Recall that all ab

cdv

and ia

bcv terms have been evaluated, as have many similar VT terms.

The first step towards deriving a scalable algorithm for ij

abDt (See Eq. (8)) is to fix the

outermost loop at the outermost virtual index b, since the b index can be evaluated across

nodes independently. For each b iteration an 2o n ij

abDt block is evaluated and stored.

The quantities with a b index are loaded once, guaranteed not to exceed size 2o n . The

tensors without a b index imply that the tensor is needed in its entirety for each b

iteration. To ensure that no v or t memory exceeds 2o n, those tensors without a b index

must be loaded into memory 2o n tiles at a time for each b index inside a loop over a

dummy virtual orbital index,u . This increases the I/O cost to 2 2o n per b index, or 2 3o n

overall, which is still below the 3 3o n computational cost.

www.manaraa.com

77

There are three tensors that must be contracted fully for a given b index:

v

ia

jb v
ij

ab t
ij

ab . The

loop corresponding to jb

iav can be eliminated right away, it is only needed in its entirety to

evaluate ma eb

ie mjI t in Eq. (8). Since, this term appears inside the symmetrizer P ,

P(v

je

mbt
mi

ea) P(v
ie

mat
mj

eb)

ma

ieI can be replaced by an equivalent mb

jeI . This leads to Algorithm 3.

for b in v { // loop over virtual b

index
 Dt(i,j,a) = 0

 load t(o,o,v,b)

 load V(o,o,v,b)
 load V(o,v,o,b)
 load V(o,o,o,b)

 Dt += Vt

 // terms with t
 for u in v {
 load t'(o,o,v,u)

 // evaluate terms with t'
 Dt += Vt'
 }

 // terms with v

 for u in v {
 load v'(o,o,v,u)
 // evaluate terms with v'

 Dt += V't
 }

 store Dt(o,o,v,b)
}

Algorithm 3. CCSD

The important points about Algorithm 3:

 The loop over the b index is easy to make parallel.

 The local memory is on the order 24o n plus 2o n per innermost v t

www.manaraa.com

78

temporary storage, corresponding to loading all of the ab ab

ij ijv t quantities, one

virtual index at a time.

 The b loop can be easily blocked to reduce the I/O by a blocking factor B

at the expense of increasing the memory by a factor of B . .

 Since the memory footprint is low, B can be fairly large. For example, for

O=100, V=2000, B=4 and B=8, the required memory is 2.6 GB and 5.2 GB per

node, respectively.

 The operations outside the u loop can be parallelized inside the node by

using a threaded math library.

 The operations inside the u loop can be explicitly parallelized inside the

node via threads, with the added benefit of overlapping I/O and computations.

4.3. (T)

The ()T correction, Eq. (14), only involves ij

abt , ij

kav , ij

abv , and ia

bcv . The unused CCSD

arrays previously allocated can be freed to make space for ia

bcv . Since ia

bcv was never

constructed, another integral transformation needs to be carried out at a small 4on cost.

The Piecuch (T) correction [15] equations were given in a way that requires keeping an

occupied index fixed and permuting the virtual index. In other words the local memory

required for ijk

abct would have been 3v . Since the triples amplitudes are symmetric with

respect to the exchange of index “columns”,

ijk jik ikj

abc bac acbt t t

all terms with jik

bact can be written with the virtual index fixed, e.g.,

t
bac

ijk t
abc

jik ,

t
cab

ijk t
abc

jki ,

etc.

Now the 3T amplitudes can be implemented as a series of 12 dgemms and 6 index

permutations, as illustrated in Algorithm 4. The important points about Algorithm 4 are:

 The symmetry in a b c indices is utilized.

 The loop over a b c indices is easily parallelizable.

 Only the loads with an a index are innermost

 The loops can be easily blocked to reduce the I/O by a factor of
2B where

www.manaraa.com

79

B is the blocking factor.

 The local storage required is 2 3 2 3 33 3 6o vB o B ovB o B

 If 1B , the actual dgemms are carried out inside another
3B loop, which

can be parallelized within a node by using threads.

 Since the memory footprint is low, the blocking factor can be large. For

example, for O=100, V=1000, B=4 and B=8, the required memory is 1.6G and

6.4G per node respectively.

for c in V {

 for b in c {
 for a in b {

 load t(o,o,a,b)
 load t(o,o,a,c)

 load t(o,o,b,c)

 load v(o,o,o,a)
 load v(o,o,o,b)

 load v(o,o,o,c)

 load v(o,o,v,a)
 load v(o,o,v,b)
 load v(o,o,v,c)

 load v(o,v,b,c)
 load v(o,v,c,b)
 load v(o,v,a,c)
 load v(o,v,c,a)

 load v(o,v,a,b)
 load v(o,v,b,a)

 // t(i,j,e,a)*V(e,k,b,c) corresponds to

 // dgemm(t(ij,e), V(e,k)), etc
 t(i,j,k) = t(i,j,e,a) V(e,k,b,c) - t(i,m,a,b) V(j,k,m,c)
 t(i,k,j) = t(i,k,e,a) V(e,j,c,b) - t(i,m,a,c) V(k,j,m,b)
 t(k,i,j) = t(k,i,e,c) V(e,j,a,b) - t(k,m,c,a) V(i,j,m,b)

 t(k,j,i) = t(k,j,e,c) V(e,i,b,a) - t(k,m,c,b) V(j,i,m,a)
 t(j,k,i) = t(j,k,e,b) V(e,i,a,c) - t(j,m,b,c) V(k,i,m,a)
 t(j,i,k) = t(j,i,e,b) V(e,k,c,a) - t(j,m,b,a) V(i,k,m,c)

 ...
 }
 }
}

www.manaraa.com

80

Algorithm 4. (T)

4.4. The overall picture.

The algorithm is implemented entirely in C++, as a part of stand-alone library

(LIBCCHEM) which includes previously reported ERI (electron repulsion integrals),

Fock, and MP2 methods [23,25,26]. The library requires only minimal input from the

host program and can be connected to a variety of packages.

The storage is implemented using Global Arrays (GA) [27] for distributed memory

and HDF5 [28] for file storage, since the GAMESS distributed memory interface (DDI)

[29] does not currently support arrays of more than 2 dimensions. The arrays are first

allocated in faster GA memory until the limit is reached, and then on the filesystem. The

arrays responsible for the most I/O need to be allocated first to ensure that they reside in

distributed memory.

The overall algorithm may be outlined as follows:

 The CCSD arrays are allocated, with t and
ab

ijv first to ensure that these

arrays are in fast storage. Overall, storage is needed for t ,
ab

ijv , ka

ijv , jb

iav , kl

ijv ,

Dt and four U intermediates

 The allocated arrays are evaluated using the regular 4-index

transformation.

 The initial 2T amplitudes are taken to be the MP2 amplitudes,
ab ab

ij ijv D ,

and the 1T amplitudes are set to zero.

 The intermediate U storage is allocated.

 The CCSD equations are repeated until an acceptable threshold is reached,

either the energy difference or the amplitude difference.

 The CCSD step is optionally accelerated using DIIS [16].

 Once converged, all but the first three arrays are freed and bc

iav array is

allocated and evaluated.

 The non-iterative (T) method is performed.

www.manaraa.com

81

5. Performance

To assess the performance and applicability of the algorithm, three scenarios are

considered here: single node performance, performance on a cluster of modest size, and

high-end cluster performance. The inputs are selected to reflect a range of basis functions

and occupied orbitals.

The modest cluster, Exalted, is composed of nodes connected by InfiniBand. Each node

has one Intel X5550 2.66GHz 6-core processor, 24GB of RAM, two local disk drives, and

an NVIDIA Fermi C2050 GPU card.

First, consider the ability of the algorithm to run on a single node and to use a filesystem

in case not enough memory is available to store all data, Table 2. As can be seen, even on

a single node, fairly large CCSD(T) jobs can still run in a reasonable timeframe (i.e., less

than a week). Despite falling back to disk in all cases, across the board the I/O time as a

fraction of total time is very small, below 5%.

Table 2. Exalted Single Node Performance.

Input #AO/Occ
1
 CCSD

2
 (T) (T)

Mem/Disk
3

(T) I/O

C4N3H5/aug-ccPVTZ 565/21 42m 8h 2.1/19.5 GB 13m

C8H10N4O2/aug-ccPVDZ 440/37 50m 17h 5.5/17.0 GB 13m

SiH4B2H6/aug-ccPVQZ 875/16 141m 18h 3.4/53.4 GB 49m

C8H10N4O2/ccPVTZ 640/37 180m 64h 12.2/49.0 GB 42m
*
m refers to minutes, h refers to hours

1
Number of atomic/occupied orbitals

2
 single CCSD iteration time

3
 Memory/Disk used to evaluate (T)

The cluster performance is assessed on the basis of the time larger jobs take to run, Table

2, and the scalability of a medium-size job, Table 3. First, all of the inputs used for single

node benchmarking can run in under a day on the cluster. Secondly, a large CCSD

Tamoxifen calculation, C26H29NO, can run on this relatively small (Exalted) cluster,

three hours per iteration.

As expected, the (T) algorithm scales well, as shown in Table 4, since it is very easy to

parallelize to a large number of nodes. However, the scalability of the CCSD algorithm is

www.manaraa.com

82

not perfect. This is especially noticable when running on a large cluster, such as the Cray

XE6 system, which has thousands of cores the two 16-core AMD Bulldozer nodes, with

64GB of RAM, connected by a fast network. The performance gain from increasing the

number of nodes, Table 5, is below linear scaling, but the longer Tamoxifen calculation

scales reasonably well to 1024 cores, reducing the runtime by a factor of 3.3 relative to

the 256 core run.

Each XE6 node has two chips, 16 cores each. The benchmarks in Table 5 were obtained

running 32 threads over the entire node created from a single MPI process. The better

option, especially in the case of (T) is to run one MPI process per chip rather than per

node, as illustrated in Table 6. If each MPI process runs (and creates threads) within a

single chip only, the threads do not need to communicate over the slower bridge

connecting two chips. Generally, there is a large penalty for sharing data across the chips,

which must be avoided by having a flexible approach to launch jobs.

Table 3. Exalted Cluster Performance. All times are in minutes.

Input #AO/Occ
1
 # cores CCSD

2
 (T)

C4N3H5/aug-ccPVTZ 565/21 24 12 61

SiH4B2H6/aug-ccPVQZ 875/16 48 20 133

C8H10N4O2/ccPVTZ 640/37 48 26 482

C26H29NO/aug-ccPVQZ 961/71 96 211 N/A
3

1
Number of atomic/occupied orbitals

2
 single CCSD iteration time

3
 Job requires 0.5TB of storage: Exalted does not have sufficient memory or parallel FS.

Table 4. Exalted Cluster Scaling, C8H10N4O2/cc-PVTZ. All times are in minutes.

Cores/Nodes CCSD
1
 (T)

24/4 28 971

48/8 15 482

96/16 11 240
1
single iteration time

Table 5. Cray XE6 CCSD Performance. All times are in minutes per single iteration.

cores 256 cores 512 cores 1024 cores

SiH4B2H6 (T)/aug-ccPVQZ 130 76 42

C8H10N4O2 CCSD/ccPVTZ 15 9 6

C26H29NO CCSD/aug-ccPVQZ 253 134 76

www.manaraa.com

83

Table 6. Cray XE6 Intra-Node Configuration, SiH4B2H6 (T)/aug-ccPVQZ. All times

are in minutes.

cores 32x1 Threads/MPI 16x2 Threads/MPI

256 130 101

512 76 49

1024 42 27

4.1. GPU CCSD Performance

As expected, the direct terms account for the most time in CCSD iterations. In the present

implementation most of that work is concentrated in a continuous application of just one

dgemm operation. Adding a graphical processor (GPU) dgemm to handle matrix

multiplication, while keeping the integral evaluation on the host, is fairly easy. In a

multithreaded environment, several threads must be assigned to a GPU device to avoid

work imbalance.

Augmented with GPU BLAS, via CUBLAS [30], the CCSD calculations on a single

exalted node get a noticeable speed up, shown in Table 7, if the direct term (See Section

4.1) dominates the entire iteration (this is the case if the number of occupied orbitals is

very small relative to the size of the basis set). If the number of occupied orbitals is

relatively high, the direct term accounts for a smaller fraction of the total iteration time,

and consequently the GPU benefit is less noticeable overall. At the time, the (T) GPU

implementation is not complete.

Table 7. Exalted Single Node+GPU CCSD performance. All times are in minutes

per iteration.

Input C8H10N4O2/ccPVTZ SiH4B2H6/aug-ccPVQZ C4N3H5/aug-ccPVTZ

Direct 124 131 36

Direct+GPU
1
 53 65 26

CCSD 163 142 42

CCSD+GPU
1
 115 75 33

CCSD Speed-up
2
 1.4x 1.9X 1.3X

1
GPU enabled

2
Overall CCSD speed-up relative to CPU code

www.manaraa.com

84

5. Conclusions

The algorithm presented in this paper is able to handle fairly large jobs on a single node, a

small cluster, and high-end Cray system. The algorithm has a small adjustable memory

footprint and is able to optionally use the filesystem if the data exceeds distributed

memory storage. The algorithm can also optionally use GPUs to speed up certain CCSD

computations. When running on the multi-core node with multiple processor packages

(chips), the algorithm benefits from limiting thread communication to within a chip.

The algorithm is implemented entirely in C++, as a part of stand-alone library which

includes previously reported ERI, Fock, and MP2 methods. [18,19].

References

[1] JA Pople, R. Seeger, and R. Krishnan. Variational configuration interaction methods

and comparison with perturbation theory. International Journal of Quantum Chemistry,

12(S11):149–163, 1977.

[2] J.A. Pople, M. Head-Gordon, and K. Raghavachari. Quadratic configuration

interaction. a general technique for determining electron correlation energies. The Journal

of chemical physics, 87(10):5968–5975, 1987.

[3] J.A. Pople, P.M.W. Gill, and B.G. Johnson. Kohn-Sham density-functional theory

within a finite basis set. Chemical physics letters, 199(6):557–560, 1992.

[4] F. Coester and H. Kümmel. Short-range correlations in nuclear wave functions.

Nuclear Physics, 17:477–485, 1960.

[5] J. Cizek. On the correlation problem in atomic and molecular systems. Calculation of

wavefunction components in ursell-type expansion using quantum-field theoretical

methods. The Journal of Chemical Physics, 45(11):4256-4266, 1966.

[6] J. Paldus, J. Cizek, and I. Shavitt. Correlation problems in atomic and molecular

systems. IV. Extended coupled-pair many-electron theory and its application to the BH3

molecule. Physical Review A, 5(1):50, 1972.

[7] D. Mukherjee, R.K. Moitra, and A. Mukhopadhyay. Applications of a nonperturbative

many-body formalism to general open-shell atomic and molecular problems: calculation

of the ground and the lowest pi-pi* singlet and triplet energies and the first ionization

potential of trans-butadiene. Molecular Physics, 33(4):955-969, 1977.

[8] I. Lindgren. A coupled-cluster approach to the many-body perturbation theory for

open-shell systems. International Journal of Quantum Chemistry, 14(S12):33-58, 1978.

www.manaraa.com

85

[9] G.E. Scuseria, C.L. Janssen, and H.F. Schaefer. An efficient reformulation of the

closed-shell coupled cluster single and double excitation (CCSD) equations.

The Journal of Chemical Physics, 89(12):7382-7387, 1988.

[10] G.D. Purvis III and R.J. Bartlett. A full coupled-cluster singles and doubles model:

The inclusion of disconnected triples. The Journal of Chemical Physics, 76:1910, 1982.

[11] K. Raghavachari, G.W. Trucks, J.A. Pople, and M. Head-Gordon. A fifth-order

perturbation comparison of electron correlation theories. Chemical Physics Letters,

157(6):479–483, 1989.

[12] P. Piecuch, S.A. Kucharski, and R.J. Bartlett. Coupled-cluster methods with internal

and semi-internal triply and quadruply excited clusters: CCSDT and CCSDTQ

approaches.

The Journal of chemical physics, 110:6103, 1999.

[13] A. Szabo and N.S. Ostlund. Modern Quantum Chemistry: Introduction to Ad-

vanced Electronic Structure Theory. Dover Books on Chemistry Series. Dover

Publications, 1996.

[13] D. Yarkony. Modern Electronic Structure Theory. Number pt. 2 in Advanced Series

in Physical Chemistry. World Scientific, 1995.

[14] I. Shavitt and R.J. Bartlett. Many-Body Methods in Chemistry and Physics: MBPT

and Coupled-Cluster Theory. Cambridge Molecular Science. Cambridge University

Press, 2009.

[15] P. Piecuch, S.A. Kucharski, K. Kowalski, and M. Musiał. Efficient computer

implementation of the renormalized coupled-cluster methods: The R-CCSD [T], R-CCSD

(T), CR-CCSD [T], and CR-CCSD (T) approaches. Computer Physics Communications,

149(2):71–96, 2002.

[16] G.E. Scuseria, T.J. Lee, and H.F. Schaefer. Accelerating the convergence of the

coupled-cluster approach: The use of the DIIS method. Chemical physics letters,

130(3):236–239, 1986.

[17] V. Lotrich, N. Flocke, M. Ponton, AD Yau, A. Perera, E. Deumens, and RJ Bartlett.

Parallel implementation of electronic structure energy, gradient, and hessian calculations.

The Journal of chemical physics, 128:194104, 2008.

[18] DE Bernholdt, E. Apra, HA Früchtl, MF Guest, RJ Harrison, RA Kendall,

RA Kutteh, X. Long, JB Nicholas, JA Nichols, et al. Parallel computational chemistry

made easier: The development of NWChem. International Journal of Quantum

www.manaraa.com

86

Chemistry, 56(S29):475–483, 1995.

[19] PCC benchmarks. http://www.qtp.ufl.edu/PCCworkshop/PCCbenchmarks.html.

[20] H.J. Werner, PJ Knowles, R. Lindh, FR Manby, M. Schütz, P. Celani, T. Korona,

G. Rauhut, RD Amos, A. Bernhardsson, et al. Molpro, version 2006.1, a package of Ab

Initio programs. 2006.

[21] M. S. Gordon and M. W. Schmidt. Advances in electronic structure theory:

GAMESS a decade later, pages 1167–1189. Elsevier, Amsterdam, 2005.

[22] T. Janowski, A.R. Ford, and P. Pulay. Parallel calculation of coupled cluster

singles and doubles wave functions using array files. Journal of Chemical Theory

and Computation, 3(4):1368–1377, 2007.

[23] A. Asadchev and M.S. Gordon. A new algorithm for second order perturbation

theory. Journal of Chemical Theory and Computation, submitted

[24] R.M. Olson, J.L. Bentz, R.A. Kendall, M.W. Schmidt, and M.S. Gordon. A novel

approach to parallel coupled cluster calculations: Combining distributed and shared

memory techniques for modern cluster based systems. Journal of Chemical Theory and

Computation, 3(4):1312–1328, 2007.

[25] A. Asadchev and M.S. Gordon. New multithreaded hybrid CPU/GPU approach to

Hartree-Fock. Journal of Chemical Theory and Computation, in press.

[26] A. Asadchev, V. Allada, J. Felder, B.M. Bode, M.S. Gordon, and T.L. Windus.

Uncontracted Rys Quadrature implementation of up to g functions on graphical

processing units. Journal of Chemical Theory and Computation, 6(3):696–704, 2010.

[27] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Aprà.

Advances, applications and performance of the global arrays shared memory

programming toolkit. International Journal of High Performance Computing

Applications, 20(2):203–231, 2006.

[28] The HDF Group. Hierarchical data format, Version 5.

http://www.hdfgroup.org/HDF5.

[29] R.M. Olson, M.W. Schmidt, M.S. Gordon, and A.P. Rendell. Enabling the efficient

use of SMP clusters: the GAMESS/DDI model. In Proceedings of the 2003 ACM/IEEE

conference on Supercomputing, page 41. ACM, 2003.

[30] R. Nath, S. Tomov, and J. Dongarra. Accelerating GPU kernels for dense linear

algebra. High Performance Computing for Computational Science–VECPAR 2010, pages

83–92, 2011.

www.manaraa.com

87

Chapter 5. Conclusions

As the computing technology changes and matures, scientific computing must

follow.

Hardware and software that was cutting edge in the 70's and 80's still dictates how many

of the computational chemistry packages are implemented today. However, computing

technology evolved very quickly since the introduction of Fortran 77. Object oriented

programming (OOP), generic programming, standard libraries, and system standards have

become the essential pieces of most modern commercial and open-source software, small

and large alike. To keep up with the improvements in computer science, computational

chemistry algorithms must be either modernized or rewritten. Often, due to software

architecture decisions made decades ago, rewriting is the only viable plan for the future.

Not all of the software needs to be modernized at once: the key pieces such as integral

and Hartree-Fock methods can be rewritten alone and integrated into the existing

software, one at a time.

Software modernization also presents an opportunity to improve the existing

algorithms, separate them into modular libraries to encourage reuse among the scientists,

and to plan ahead, given the trends in computing over the last few decades.

The first algorithm presented was for the Hartree-Fock method, the reference

method in the most electron correlation theories. The Hartree-Fock method requires

www.manaraa.com

88

evaluation of the two-electron integrals, which constitutes the most consuming part.

Unlike other pieces in computational chemistry, two-electron integral methods are

specific to the domain and do not receive much attention from outside the field. In the

present work the integrals were implemented using the Rys Quadrature approach, one of

several integral methods. While algorithmically more complex than other methods, the

Rys Quadrature method is a general numerically stable method with low memory

footprint, which makes it suitable for implementation on graphical processing units

(GPU).

Once the integral engine was implemented, the multithreaded Hartree-Fock

method naturally followed. The integral and Hartree-Fock GPU implementation was able

to reuse many key pieces of the CPU algorithm, designed to be fast, extensible, and

flexible through the use of a code generator and C++ templates.

One of the most common electron correlation methods is second order many-body

perturbation theory (MBPT2), also known as Moller-Plesset second order perturbation

theory (MP2). Unlike higher-order treatments, MP2 is a relatively inexpensive black-box

method which makes it very popular. Hence, the Hartree-Fock implementation was

followed by an implementation of the MP2 method. Like the Hartree-Fock method, the

MP2 implementation relies heavily on fast integrals. But unlike Hartree-Fock, most of

computational work is handled by the de facto standard basic linear algebra subroutines,

BLAS. The MP2 algorithm implemented is a semi-direct method, meaning that the

partially transformed integrals need to be stored in secondary storage, such as disk or

distributed memory. Unlike the other MP2 algorithms, which are based on either disk or

distributed memory, the implemented algorithm uses Object Oriented Programming

(OOP) features of C++ to provide transparent integral storage on either disk or in

distributed memory.

The natural follow-up to MP2 is coupled cluster (CC) theory. The coupled cluster

method, truncated at singles and doubles excitations, CCSD, with a perturbative triples

correction (T) leads to the CCSD(T) method, often called the gold standard of

computational chemistry due its accuracy. CCSD(T) is very expensive method, both in

terms of computer time and memory. However, with the lessons learned designing the

www.manaraa.com

89

MP2 algorithm, a fast

CCSD(T) algorithm was developed such that it could run on both a single workstation

and supercomputers. The key to the implementation was optimizing the algorithm in

terms of memory first, I/O overhead second, and concentrating on the computational

efficiency last.

By using several properties of atomic to molecular basis transformations, several

expensive computation and storage requirements were eliminated from the CCSD

algorithm. And by using the well-known loop optimization technique called blocking, the

(T) algorithm was implemented with very little memory requirement and very little I/O

overhead.

The three algorithms summarized above were prompted by the need to

accommodate the wide array of computational hardware. In the process, the algorithms

were improved, often drastically. Implemented in C++, the algorithms and the supporting

framework were built as a stand-alone library, with Fortran bindings. Connected to

GAMESS, the library was successively integrated with the existing legacy code. While

not explicitly discussed, the supporting framework, such as basis set and wavefunction

objects, is absolutely necessary to develop robust flexible modern code.

	2012
	Modernizing the core quantum chemistry algorithms
	Andrey Asadchev
	Recommended Citation

	tmp.1370013123.pdf.CLvjC

