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Chapter 1.  Introduction 

The primary goal of computational chemistry is of course to predict chemical properties: 

energy, gradients, Hessians (vibrational frequencies), and other properties for a given 

chemical system. For example, to find the excitation energy or rotation barriers one 

would perform a series of single point energy calculations. To find local extrema on the 

potential energy surface a series of energy gradient calculations are needed.  

 

The computational science aspect of computational chemistry is often treated as a 

necessary evil. Over the years, most of the designers and authors of quantum chemistry 

algorithms and their implementations were chemists and physicists first, and 

computational scientists second.  

 

The foundations for quantum chemistry were developed before World War II. For 

example the Hartree-Fock [1,2] method was developed in the late 20’s, and the 

foundation of perturbation theory [3] dates back to the mid 30’s. However, practical 

application of the theoretical methods did not come until the emergence of sufficient 

computing resources to crunch the numbers.  

 

20th century scientific computing was dominated by Fortran, short for Formula 

Translator, one of the earliest programming languages, first developed in the 50’s [4]. The 

computers and operating systems at the inception of Fortran were expensive proprietary 

products, batch machines running stacks of manually prepared inputs. Compared to 

today’s powerful computers, computing in the 50’s and the 60’s may as well have been 

done on clay tablets.  

 

In the 70’s another language, C [5], and a new operating system, UNIX, came out of Bell 

Labs. With the rise of UNIX, the C programming language gained strong footing among 

computer science and computer engineering practitioners. In the same decade Cray 

produced its first groundbreaking supercomputer, Cray I, which gave researchers for the 

first time, the ability to crack tough numerical problems, such as weather prediction, in a 

timely manner. In the field of computational chemistry many of the core programs (some 

still in use today) were developed and incorporated into computational chemistry 
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packages, notably HONDO [6] and GAUSSIAN [7]. A majority of this work was 

spearheaded by John Pople, who won the 1998 Nobel Prize for his contribution to the 

field.  

 

The 80’s saw the growth of UNIX and standardization of system interfaces with POSIX 

and SystemV [8] standards. C++ [9], a multi-paradigm language based on C, was being 

developed by Bjarne Stroustrup at Bell Labs. To avoid limitations placed on software by 

patents and restrictive licensing, Richard Stallman began the GNU foundation, which 

sought to liberate software development. The GNU Compilers Collection (GCC) and 

GNU public licenses are perhaps the most visible of the many contributions GNU made 

to computing and scientific fields. The decade also witnessed the birth of massively 

parallel supercomputers, such as the Thinking Machines. To take advantage of the 

emerging trends in scientific computing, a number of parallel computational chemistry 

algorithms were developed, including parallel Hartree-Fock [10] and second order 

perturbation theory (MP2) [11]. In the early 80’s Purvis and Bartlett first implemented a 

coupled cluster singles and doubles algorithm [12], or CCSD for short. Subsequently, 

CCSD with a perturbative triples correction method [13], CCSD(T), was developed 

which today is the gold standard of computational chemistry. In the same decade, 

GAMESS [14] began to be developed, with HONDO as much of its initial codebase.  

 

In the 90’s, the exotic supercomputers of the previous decades slowly disappeared, 

starved from the generous military budgets of the Cold War which was now over [15,16]. 

The burgeoning personal computer market funneled billions of dollars into research and 

development of commodity Intel and AMD processors. The fragmented UNIX market 

was slowly eroded by the ever maturing Microsoft Windows and a new operating system, 

Linux. Started as a hobby in the early 90’s by Linus Torvalds, Linux, released under a 

GNU Public License, quickly caught the interest of programmers worldwide and within a 

few years became one of the major operating systems of the Internet age. The C++ 

programming language became the preferred choice for writing complex applications, 

albeit not just yet in scientific fields. However, more and more scientific codes of the 90’s 

were run and developed for clusters of commodity computers running Linux and 

connected by relatively inexpensive networks. One of the more interesting developments 

in computational chemistry was NWChem [17], a set of codes designed specifically with 



www.manaraa.com

3 

 

 

 

parallel distributed memory systems in mind. NWChem was perhaps the last major 

computational chemistry package whose development started primarily in Fortran.  

 

The Internet bubble burst at the turn of the 21st century, spelling financial problems and 

consequent death to the many flagship companies of the last century, including SUN and 

SGI. With the release of X86-64 extensions by AMD in 2003, commodity processors 

became a full-fledged 64-bit architecture, suitable for any computational challenge. By 

the 2010’s the processor market became dominated almost exclusively by multicore 

AMD and Intel chips, with IBM still retaining some presence in the high-end computing 

market with its Power processors. The latest development in the commodity computing is 

the reemergence of accelerators, such as using graphics cards to solve general programs, 

so-called General Processing on GPU (GPGPU). The leader in the field has been 

NVIDIA with its CUDA [18] technology, but recently Intel joined the market with its 

Many Integrated Cores (MIC) technology [18]. The efforts to unify development across 

regular microprocessors and various accelerators led to OpenCL [18], a set of open 

standards for developing applications that run across heterogeneous platforms.  

 

The software development in scientific communities has steadily shifted towards C/C++. 

While there is still a lot of legacy code written in Fortran (and hence continuing 

development), much of the new development happens in C++ and Python [19]. Examples 

are Q-Chem [20], with most of its new development happening in C++, and Psi4 [21], 

almost entirely implemented in C++ with Python used as a scripting engine. The C++ 

language and compilers continue to evolve and improve at a faster pace than Fortran, 

mostly due to the influence of the much larger commercial application development 

market. In terms of raw speed, the C++ programs are as fast as their Fortran counterparts, 

but C++ has the advantage of modern programming techniques and many libraries and 

frameworks, e.g. Boost [22].  

 

So, what does the contemporary scientific computing platform look like now? It is almost 

always a distributed memory cluster of very fast multicore computers, with between 2 and 

64 GB of memory per node. Some clusters might have GPU accelerators to augment the 

computational power. The number of cores in the cluster varies greatly, from just a few to 

tens of thousands. The interconnect can be 1Gb Ethernet, InfiniBand, of a proprietary 
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network, such as SeaStar on Cray supercomputers. The file system can be a local disk or a 

parallel file system capable of storing terabytes of data.  

 

Ultimately, it is the hardware (or rather the hardware limitations) that dictates how the 

algorithm is to be designed. Until we have infinite memory and bandwidth, the algorithms 

will always have to be designed with these limitations in mind. Furthermore, the 

algorithms have to be designed so as to account for a great variety of system 

configurations. A few general rules of thumb can be used as general guidelines for 

designing scalable and efficient algorithms: minimize communication, keep memory 

footprint low and introduce adjustable parameters for memory use, use external libraries, 

e.g. Linear Algebra Package [23] (LAPACK), and make software easy to modify, extend, 

and even rewrite, perhaps by using one certain programming language over another. 

Furthermore, how will the scientific computing landscape look in the future? Who 

knows! But the software must be designed so that changes dictated by the hardware can 

be accommodated efficiently.  

 

In the following chapters are attempts to develop a modern, but simple and flexible, C++ 

foundation for computational chemistry algorithms and several algorithm 

implementations built upon that foundation with the above rules of thumb in mind.  

But before one can get into the intertwined details of science, algorithms, and hardware 

some theoretical background is necessary to explain to the reader in broad detail the basis 

sets, two-electron integrals, and transformations which will form the bulk of the 

subsequent pages.  

1. Hartree-Fock 

At the center of computational chemistry is the evaluation of the time-independent 

Schrödinger equation eigenvalue problem,  

 H E  

where H  is the Hamiltonian operator,  is the wavefunction containing all of the 

relevant information about the chemical system, E  is the energy of the system and 

eigenvalue of the Hamiltonian. To be a proper wavefunction,  must be square 

integrable and normalized, 1< > , and antisymmetric to satisfy the Pauli exclusion 

requirement for fermions. The expectation value E  then can be computed as:  
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 < H > E  

 

In terms of individual contributions, the Schrodinger equation can be written in terms of 

the kinetic and potential energies of the electrons and nuclei:  

 ( )e n ee en nnT T V V V E  

 

eT  and nT  are the kinetic energy terms for electrons and nuclei respectively  
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The closed form analytic solution for the Schrodinger equation exists only for the 

simplest systems, such as those with one or two particles. To evaluate a quantum system 
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of interest, a number of approximations have to be made. In the Born-Oppenheimer 

approximation [24] the much slower nuclei are treated as stationary point charges and the 

Schrodinger equation then reduces to the electronic Schrodinger equation:  

 e e ee enH T V V  

 

 
e eH E  

 

The general problem of the type 1

ijr
< >  has no analytic solution and further 

approximations must be made. The crudest solution is to assume that electrons do not 

interact with each other. This leads to the independent particle model in which  

 
1 1 2 2( ) ( )IPM r r  

is separable with respect to each electron coordinate vector.  

The independent particle wavefunction does not satisfy the anti- symmetry requirement, 

but properties of the determinant do (since exchanging any two rows or columns changes 

the sign). Taking the determinant of IPM  leads to Slater determinant HF  which in turn 

leads to the Hartree-Fock method  

1 1 2 1 1

1 2 2 2 21
1 2

1 2

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

N

N

HF N N

N N N N

…

x x x

x x x
x x x

x x x

  

After performing a series of algebraic manipulations, the closed-shell Hartree-Fock 

energy can be written as  

 2 (2 )HF HF e HF ii ij ij

i ij

E < H > h J K  

 

where iih  is the one-electron integral  

 
2

1 1( ) ( )
2

nN

n
ij i j i j

n n

Z
h h dr

r
 

 

and the J  and K  terms, called Coulomb and exchange, respectively, are two-electron 

integrals  
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 ( )J ij ij  

 

 ( )K ij ji  

 

 
1 1 2 2 1 2

12

1
( ) ( ) ( ) ( ) ( )i j k lij kl r r r r drdr

r
 

 

From now on, the HF  label will be dropped and  will be understood to refer to HF  

and H  to refer 
eH .  

The only constraint on the one particle orbitals is that they remain orthonormal,  

 i j ij< >  

Therefore the orbitals can be manipulated to affect the energy. According to the 

variational principle, the best orbitals are those that minimize the energy,  

 0E  

The method of Lagrange multipliers solves the minimization problem with constraints. 

The resulting Lagrange equation  

 [ ( )] 0ij i j ij

i j

< H > < >  

can be reduced to  

 
k ij kF  

where F  is the Fock operator  

 1[ (2 )]i i

i

F h J K  

Taking the Lagrangian multipliers to be of the form  

 ij ij k  

the Hartree-Fock minization problem becomes an eigenvalue problem:  

 k k kF  

 

Optimizing general orbitals in the above problem is not generally feasible. Instead 

Roothaan [25] proposed to expand orbitals in terms of a known basis and restrict the 

optimization to the coefficients of a known expansion basis :  
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N
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The optimization of molecular orbitals 
i
 in terms of a fixed basis leads to the Hartree-

Fock-Roothaan equations  

 FC SC  

where C  is the coefficient matrix and ( )i jS  is the basis overlap matrix. The above 

equation is almost a solvable eigenvalue equation, except for the S  term. Although a 

general basis is not usually orthonormal, it can be orthonormalized in which case the 

overlap matrix becomes the identity matrix, ijS  and the Hartree-Fock-Roothaan 

equation takes the form of a regular eigenvalue problem  

 FC C  

 

Now an expression for the Fock operator can be derived in terms of the coefficients and 

one- and two- electron integrals over basis functions  

 1 2 2( ) [( ) ( )]i j i j k l j k j lF h D h h  

where 2 ib ibi
D c c  is known as the density matrix.  

 

Since the orbital coefficients appear on both sides of the equation, the Hartree-Fock 

method must be repeated until the difference between the old and the new coefficients 

reaches a certain threshold. Because of that, the Hartree-Fock method is also called the 

self consistent field (SCF) method.  

 

The simple interpretation of the Hartree-Fock method is that an electron is moving in the 

mean field of the other electrons. The interaction of individual electrons is not correlated, 

other than accounting for the Pauli exclusion principle. Accounting for electronic 

interaction will be discussed below.  

2. Basis Set 

To understand the intricate details of the computational chemistry algorithms, especially 

when discussing two-electron integrals, a few words must be said about the basis set.  
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Modern basis sets are based on atomic orbitals, which are spatial orbitals reminiscent of 

the s p  orbital shapes found in physical chemistry books. Because of that the basis 

sets are often called atomic basis functions or atomic orbitals, as opposed to molecular 

orbitals, which are simply atomic orbitals transformed via the coefficient matrix C .  

The correct shape for an (Cartesian) atomic orbital is the Slater-type orbital (STO)  

 l m n rAx y z e  

where A  is the normalization coefficient and l m n  are related to the angular momentum 

quantum number L ,  

 L l m n  

 

Using a Gaussian function, a similar type of orbital, called Gaussian-type orbital (GTO), 

can be devised  

 
2l m n rAx y z e  

 

Unlike the Gaussian functions, the Slater functions cannot be separated into x y z  

components, making the evaluation of integrals over the Slater basis expensive. On the 

other hand, Gaussian function can be written as  

 
2 2 2 2r x y ze e e e  

and due to this property, the computation of integrals over the Gaussian functions is much 

simpler [26], with a number of different closed-form solutions for one- and two- electron 

integrals [27,28,29,30]. Most electronic structure programs use GTOs as basis sets. An 

exception to this trend is Amsterdam Density Functional (ADF) program suite [31] which 

uses STOs.  

 

To reproduce the approximate shape of an STO, a linear combination of several GTOs 

can be taken and fitted according to some criteria, a process known as contraction and the 

resulting orbital called contracted Gaussian-type orbital,  

 
2

k

K
rl m n

cgto k

k

Ax y z C e  

where K  is the construction order and kC  are the contraction coefficients. In this context, 

the individual Gaussians are called primitives.  
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The individual contracted orbitals which share the same primitives are grouped together 

into shells. The primary reason for doing so is computational efficiency. With a correct 

algorithm, only the angular term l m nx y z  will be different between shell functions; the 

terms involving expensive exponent computations will be the same.  

 

The simplest contracted basis sets are of the STO-NG family [32], where N is the number 

of contracted GTOs fitted to an STO using a least-squares method. The major difference 

between GTOs and STOs is the function shape near the origin, where GTOs are flat and 

STOs have a cusp. This is especially important for the core electrons near the nucleus. 

More advanced basis sets typically have more GTOs to represent contracted core orbitals 

(6-10 GTO) and fewer GTOs to represent non-core orbitals (1-3 GTOs). This segmented 

approach strikes a delicate balance between accuracy and computational time.  

 

It should be obvious that a larger basis set will give better orbitals and lower energy, 

based on the Variational Principle. However, larger basis sets will also increase the 

computational time, may lead to slower convergence, and may result in numerical 

instabilities. A majority of time is spent evaluating two-electron integrals and building the 

Fock matrix. Although, atomic integrals do not change from iteration to iteration, storing 

4N  elements can be prohibitively expensive for any large system, and thus the integrals 

can be re-computed on-the-fly. Currently, Hartree-Fock computations with a few 

thousand basis functions are routinely performed in a matter of hours. In the near future 

that number is likely to be the tens of thousands.  

3. Electron Correlation 

As a rule of thumb, the energy computed with the Hartree-Fock method accounts for 99 

% of the total electronic energy. However, the desired physical properties are frequently 

associated with the last 1 % of the energy. Hartree-Fock computations can give very good 

geometries, but the energy differences can only be qualitative at best.  

 

Recall from the above discussion that the Hartree-Fock model does not account for the 

instantaneous electronic interaction, but instead treats each electron as interacting with an 

electronic mean field. The difference between the total energy and the Hartree-Fock 

energy is called the correlation energy  
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 corr hfE E E  

 

To recover the correlation energy, Hartree-Fock computations must be followed by what 

are called correlation methods, which try to recover the correlation energy from the 

Hartree-Fock wavefunction. In the context of electron correlation computations, Hartree-

Fock is typically the zeroth order (also called the reference) wavefunction. Among the 

many correlation methods there are two that are central to the next chapters: the MP2 and 

coupled cluster methods.  

 

The formula for the MP2 energy is relatively simple, expressed only in terms of integrals 

over molecular orbitals ( )ia jb  and orbital energies   

 
2

[2( ) ( )]( )
MP

ij ab i j a b

ai bj bi aj ai bj
E  

 

As is customary in many-body methods, the indices i j  refer to occupied molecular 

orbitals O , a b  to virtual orbitals V , and p q r s  to atomic basis functions N .  

The time consuming part of the MP2 energy computation is not the actual energy 

computation, which scales as 
2 2O N , but the transformation from atomic to molecular 

integrals (also called 4-index transformation), which scale as 
4ON . Another bottleneck in 

many-body methods is the storage of molecular integrals. For a large MP2 calculation the 

storage may well be on the order of terabytes. The details of the MP2 energy computation 

will be covered in detail in the corresponding chapter.  

 

Coupled cluster theory was first proposed in nuclear physics [33] and later adopted in 

quantum chemistry by Cizek [34] as the exponential ansatz  

 1 2( )

0 0
nT T TTe e  

where 1 nT T  are the n-particle excitation operator and 0  is the reference wavefunction, 

typically hf  in computational chemistry. The excitation operator applied to a reference 

wavefunction is written in terms of excitation amplitudes t  from hole states i j k  (also 

referred to as occupied orbitals) to particle states a b c  (also referred to as virtual 

orbitals),  
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 0

abc abc

n ijk ijk

ijk abc

T t  

 

The CCSD algorithm is an iterative process that scales as 
2 2 2N V O  and the triples 

correction ( )T  scales as 
2 4N V O . To compute the CCSD(T) energy, every type of four-

index molecular integral is needed. The coupled cluster algorithm will be covered in 

detail in the last chapter. Both, MP2 and CC can be easily and systematically derived 

using Goldstone diagrams, a diagrammatic approach to nonrelativistic fermion interaction 

based on Feynman diagrams. A very thorough treatment of the many-body theory can be 

found in the excellent book by Shavitt and Bartlet [35].  
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Abstract 

In this article a new multithreaded Hartree-Fock CPU/GPU method is presented which 

utilizes automatically generated code and modern C++ techniques to achieve a significant 

improvement in memory usage and computer time. In particular, the newly implemented 

Rys Quadrature and Fock Matrix algorithms, implemented as a stand-alone C++ library, 

with C and Fortran bindings, provides up to 40% improvement over the traditional 

Fortran Rys Quadrature. The C++ GPU HF code provides approximately a factor of 17.5 

improvement over the corresponding C++ CPU code. 

1. Introduction 

As computer hardware becomes more sophisticated and complex and programming 

languages, compilers, and software patterns mature, it becomes necessary to re-engineer 

software written during the eighties or earlier in order to take advantage of modern 

hardware and language features. Unlike older hardware, modern processors have more 

and more cores, multithreading becomes more and more important, and novel 

architectures such as graphical processor units (GPU) enter mainstream scientific 

computing. 

 

“Legacy” programs often do not take into account low-level details of modern processors 

such as multilayer cache organization, pipelines, and SIMD (single instruction, multiple 

data) units
1
. As a result of poor cache performance, programs waste CPU cycles, moving 

data at the expense of actual computations. Failure to take advantage of the SIMD 

architecture, due for example to unfavorable control structures and memory access 

patterns, can lead to as much as a 50 percent drop in performance. Parallel execution 

within a single node presents a challenge as well: computational tasks in legacy code tend 

to run as processes, rather than as threads, limiting the utility of shared memory and fast 

inter-thread communication offered by a multi-threaded environment
2
, resulting in 
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replicated memory which puts additional strain on memory cache and bus. OpenMP can 

at times solve the problem of multi-threading in legacy codes, provided that internal 

subroutines are thread-safe, which is not always the case. 

 

There are several projects that aim to address shortcomings of legacy code, implementing 

the entire suits of Quantum Chemistry algorithms using new programming techniques, 

typically in C++, for example PSI
3
 and MPQC

4
. 

 

This paper describes a new approach to the Hartree-Fock method that is meant to address 

the requirements of modern hardware and software, from a low-level two-electron Rys 

Quadrature
5
 implementation to multi-threaded parallel Fock matrix construction and GPU 

implementation.  The method described here does not aim to replace an entire software 

package, but rather to provide an independent library that can be used to replace or 

augment existing Hartree-Fock and integral implementations.  This paper is organized as 

follows: Section II presents the developments associated with the Rys quadrature 

algorithm, including automatically generated code and the requirements for quartets that 

contain low and high angular momentum quantum numbers. Section III considers various 

aspects of the Fock matrix construction. The C++ CPU implementation is presented in 

Section IV, while the corresponding GPU implementation is discussed in Section V.  

Section VI considers the performance of the new algorithms, and conclusions are drawn 

in Section VII. 

 

2. Rys Quadrature Implementation 

Modern computers have complex architectures and pipelines, making it difficult for an 

application programmer to write efficient assembly code. Fortunately, modern compilers 

are able to produce efficient code if several constraints are met:  

 Memory access has a favorable alignment; for example, 16 bytes for the 

current Intel Core architecture  

 Non-overlapping segments of memory are flagged as such, using a special 

type declaration or compiler pragmas, e.g., the C99 restrict keyword 

 Innermost loops do not have control statements, such as if or equivalent  

 Short innermost loops have bounds that are known at compile time  



www.manaraa.com

18 

 

 

 

 Innermost memory accesses are contiguous, i.e., they have a stride of one  

Provided the above conditions are met, a modern compiler should be able to generate 

efficient machine code for a particular architecture using advanced features, such as 

SIMD.  

 

Of course, most application programmers (e.g., computational chemists) would not 

endeavor to write assembly code. However, nontrivial algorithms, such as the Rys 

Quadrature that is used for two-electron integrals in quantum chemistry codes
5
, still 

require a significant amount of code to accommodate the compiler requirements. Writing 

such codes manually can be time consuming and error-prone, regardless of the language 

used. However, there are a number of code generators which can greatly simplify the task 

through automation. Using code generators to implement integral routines is not new; for 

example, the excellent LIBINT
6
 library was implemented using a code generator. For this 

project, the Python Cheetah code generator
7
 was chosen for the following reasons:  

 Generator statements are embedded directly into the source code template, 

regardless of language, which, for example, can be C++, C, or Fortran.  

 The generator statements are just regular Python statements.  

 Any Python module can be imported and used in the generator 

environment, including several symbolic algebra packages, such as 

sympy
8
 and Sage

9
, which provide an interface with Mathematica

10
 and 

other computer algebra systems.  

The strategy towards implementing the Rys Quadrature algorithm is as follows
5b

:  

 Certain integrals, particularly those over basis functions with low angular 

momentum quantum numbers, e.g., L=0 (s) and L=1 (p), and consequently 

small shell quartet block sizes (e.g., there 64 integrals in a (sp sp|sp s) 

quartet, and short polynomial expressions, are best computed directly 

using the entire polynomial expression at once, rather than via two-

dimensional intermediates.  

 General integrals over basis functions with higher angular momentum 

quantum numbers have prohibitively long polynomial expressions and 

must be assembled from two-dimensional intermediate integrals via so 

called recurrence and transfer relations
5
.  
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2.1. Rys Quadrature 
 

The main idea in the Rys Quadrature is to represent a six dimensional integral 

  

 (ij|kl) = 1 2

12

1
1 1 2 2  i j k l dr dr

r
 

 

 

as a product of three two-dimensional integrals Ix, Iy. Iz, 

 ( ) ( ) ( )
N

x y z

a

I a I a I a W a  

 

summed over an exact N-point numerical quadrature with roots a and weights W. The 

two-dimensional integrals Ix, Iy. Iz are evaluated using recurrence and transfer equations.  

The exact formulation of the equations can be found in the original Rys paper
5
. 

Each primitive integral above corresponds to a single contraction.  When evaluating 

contracted shells, the full expression becomes 

        

( | ) ( , , , )
A B C D

a b c d

a b c d

ij kl C C C C I a b c d

 
where the bounds of the summation are shell contraction orders, C are the contraction 

coefficients and ( , , , )I a b c d

 

are primitive uncontracted integrals. 

2.2. Small Angular Momentum Integrals 

If an integral expression (ij|kl) is simple enough, it can be expanded directly into a 

polynomial, removing the need to compute and store two-dimensional integrals. Doing 

this also has the benefit of providing the compiler with enough information to enable 

aggressive optimization. Furthermore, expanded expressions can be filtered through a 

computer algebra system, like Mathematica, simplified, and organized together 

arbitrarily. The above strategy is not, however, computationally favorable if the integral 

expression is large, since the large amount of produced code tends to overflow the data 

and program cache and can adversely impact performance.  

 

The polynomial expressions are expanded from recurrence and transfer formulas as 

follows:  

 The symbolic algebra Python package, sympy, is used to build a raw 

polynomial expression from terminal terms, the starting and ending values 
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in the Rys recursive formulas, using recurrence and transfer formulas.  

 The raw polynomial expressions are piped into Mathematica through 

Sage, a Python package that provides interfaces with popular computer 

algebra systems. Mathematica simplifies the raw polynomial 

expressions and performs a common sub-expression elimination (CSE) to 

pull out common terms.  

 The number of common terms can be quite large, generally larger than the 

number of registers (16 for the current generation of Intel x86-64 

processors). Simplified expressions are reordered to maximize register 

reuse.  

 Simplified expressions are stored as a plain text Python dictionary dump, 

together with the terminal terms and common terms expressions.  

 Since the expression order may have changed, values might have to be 

permuted to restore the original integral order  

 

In the expression dictionary dump, each integral block expression has a lookup key, 

which is a collection of four strings, corresponding to shell symbols. The first entry is the 

dictionary of terminal symbols (those with empty expressions) and common terms (those 

with nonempty expressions). The next entry is the list of individual functions in the 

integral block, specified by their   l,m,n  angular momentum quantum numbers. Each 

function has a polynomial expression as a string and a list of required terms, both terminal 

and common. Once they have been loaded, the expressions can be read from the 

dictionary and implemented inside the loop over quadrature roots.  

 

The algorithm is fairly straightforward: the primitive integrals, depending on individual 

contractions of the basis functions 
  i, j,k,l  and the corresponding roots and weights   a,w 

of the integral shells 
  P,Q,R,S , are evaluated inside the four nested loops corresponding 

to primitives. The actual integral construction and summation over the roots is handled by 

a function specialized for the shell types (e.g., s, sp, d, etc.) of the shells 
  P,Q,R,S , i.e. the 

actual implementation of the polynomial expressions. The bra and ket primitives are pre-

computed to reduce the number of exponent computations. Once the integral is assembled 

for all contractions, it is then reordered to restore the correct order. Finally, the amount of 

memory required is determined by the integral quartet size. For small integral blocks, this 
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amount of memory is small enough to completely fit in L1 cache. 

  

Through some experimentation it was found that integral blocks with approximately 160 

functions, e.g. 
  (fsp|sps) , where sp refers to a hybrid sp shell, and below tend to have the 

best balance between performance and code size. Large integral quartets, for example a 

full S P  quartet, tend to increase code size and compilation time dramatically, without 

noticeable performance benefit.  

2.3. General Integrals 

General integrals with high angular momentum quantum numbers are best computed 

using a traditional approach via two-dimensional intermediates. However, the details of 

the present implementation are significantly different from others and are best described 

using the pseudo algorithm in the C++ Listing 1.  The lines in the pseudo-code after “//” 

are comments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
// P,Q,R,S are the Shell objects that contain all 

// information such as contracted Gaussians, angular // 
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momentum L, etc.  

 

N = (P+Q+R+S)/2 + 1 // number of quadrature roots 
bra (P,Q); // bra primitives 

 
for k,l in (R,S) { // ket contractions 
    ket (k,l); // ket primitives 
    for i,j in (P,Q) { // bra contractions 

        // contraction factor 
        C = bra(ij)*ket; 

        if (C < cutoff) continue; // screening 
        // roots and weights 
        (a,w) = roots(bra(ij), ket); 

        (Gx,Gy,Gz) = recurrence(bra(ij), ket); 
        (Ix(K),Iy(K),Iz(K)) = transfer(Gx,Gy,Gz); 

        ++K; 
    } 
} 

 
for r,s in (R,S) { // R,S functions 
    Ix = Ix(:,:,x(r),x(s),:) 
    Iy = Iy(:,:,y(r),y(s),:) 

    Iz = Iy(:,:,z(r),z(s),:) 
    for k in K { // contractions 

      for a in N { // roots 
        // form integrals 
        G(0) += Ix(Li,Lj,k)*Iy(0,0,k)*Iz(0,0,k) 

        G(1) += Ix(0,0,k)*Iy(Li,Lj,k)*Iz(0,0,k) 
        ... 

        G(M-1) += ... 
      } 
      I(0:M) += C*G 

      for a in N { // roots 
        ... 

      } 
      I(M,...) += C*G 
      ... 

    } 
    transform(G) 

} 

   

Listing 1. Bra Quadrature 

 

 

The main ideas of the pseudo-code are:  

 The bra,   PQ | , exponential factors are pre-computed, to avoid a quartic 

number of exponent computations.  

 Inside the individual primitive loops the roots are computed to form 

recurrence intermediates that in turn are used to generate the final two-

dimensional integral via transfer relations for a given contraction K .  

 Once all of the two-dimensional integrals are formed. they are transformed 
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into the final electron repulsion integral (ERI). Details of the 

implementation are somewhat involved and are explained below.  

2.4. Bra Kernel 

In calculating the shell functions there is not a simple runtime relationship between the 

number of an iteration, corresponding to a particular basis function ( , , )f l m n , and the 

individual angular momentum quantum numbers   l,m,n . Therefore, the angular 

momentum components could be tabulated and looked up during runtime. However, 

indirect indexing due to the use of a lookup table prevents effective optimization by the 

compiler. In the outer loops, there is little overhead due to indexing, but for the innermost 

loops, corresponding to the bra part, the indexing overhead becomes significant. In order 

to avoid lookup tables in the bra loops, all of the indexes on the bra side must be available 

during compilation. This is fairly easy to accomplish using a code generator, the same 

Python Cheetah code generator described above. 

  

Different kernels, corresponding to different numbers of roots, can also be generated 

using the code generator. However, since the code described here was written using C++, 

this becomes unnecessary, since the C++ template meta language can be used to 

accomplish the same result much more effectively. The number of functions computed in 

any given block may be too large for the compiler to handle effectively, primarily 

because there are only a small number of registers. Therefore, the entire list of bra 

functions is broken up into blocks of M functions each. After some experimentation, an 

M value of 10 was found to be the most effective.  

 

It should be noted that for a given integral block, the bra subsection is evaluated entirely 

for each given ket index, for all contractions. This allows the code to generate the entire 

integral block piecewise, and transform individual bra blocks one by one, without 

forming the entire integral. The utility of this approach is described in terms of the Fock 

matrix construction in more detail below.  

 

Throughout the entire computation, the three innermost indices correspond to roots and 

bra indices that are known at compile time, delegating the task of the actual optimization 

to the compiler.  
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3. Fock Matrix Construction Implementation 

The construction of the Fock matrix
11

 from the integrals and the density matrix can be 

split into two parts: higher level iterations over the shell quartets and lower-level 

contraction of the density matrix with the integrals to produce a Fock matrix block that 

corresponds to a particular integral quartet 
  (i,j,k,l)

.  

 

The general approach to contracting an integral I with the density matrix D is outlined in 

Listing 2.  The coefficient C refers to Coulomb term coefficients, and X refers to 

exchange term coefficients.  For plain Hartree-Fock (HF) using 8-fold symmetry those 

coefficients would be 4 and -1 respectively, but for methods that modify the Fock 

operator, e.g., density functional theory (DFT), those coefficients may be different. 

 

 
// I(i,j,k,l) are already computed: ints 

// D(i,j) is density matrix 
for l in S { // ket indices 
  for k in R { 

    for j in Q { // bra indices 
      for i in P { 

        F(i,j) += C*D(k,l)*I(i,j,k,l) 
        F(k,l) += C*D(i,j)*I(i,j,k,l) 

        F(i,k) += X*D(j,l)*I(i,j,k,l) 

        F(i,l) += X*D(j,k)*I(i,j,k,l) 

        F(j,k) += X*D(i,l)*I(i,j,k,l) 

        F(j,l) += X*D(i,k)*I(i,j,k,l) 
      } 
    } 

  } 
} 

   

Listing 2. Fock contraction 

 

The following modifications are made to improve performance:  

 The density and Fock matrix blocks, corresponding to a particular 

combination of two shells, are stored contiguously to optimally use cache 

locality. This is addressed in more detail in the next subsection. 

 The innermost loops are relatively short, and for the best performance the 

loop sizes are known at compile time.  

 The memory usage is dominated by integral storage. However, since the 

integrals are being formed block by block, the entire integral never needs 

to be stored. Instead, each bra tile is contracted with the appropriate 
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density tile to form a Fock tile piece by piece.  

 Since small angular momentum integrals are formed at once, a specialized 

version to handle that case is implemented as well. 

  

The kernel version of the code specialized for the entire bra-ket, i.e. small angular 

momentum integrals, is essentially Listing 2 with loop bounds that are known at compile 

time, to provide the compiler with the information needed to enable aggressive 

optimization.  For example, when compiling a Fock kernel corresponding to a (ss|ss) 

quartet, all the loop bounds are 1 and the compiler will optimize out the loops altogether. 

 

The kernel version specialized for partial Fock contraction is implemented as a function 

object that “remembers” indices ,k l  (see the pseudo-code in Listing 3). For each integral 

bra tile being formed, the apply function is called. With each transformation, the internal 

indices are updated to maintain the correct state.  

 

 
class Fock { 
    k,l = 0 // initial state 
    apply(I(P,Q)) { 

      for j in Q { // bra indices 
        for i in P { 

          F(i,j) += C*D(k,l)*I(i,j) 
          ... 
          F(j,l) += X*D(i,k)*I(i,j) 

        } 
      } 

      ++k // update state indices 
      ++l 
    } 

} 

   

Listing 3. Tiled Fock contraction 

 

3.1. Blocking Fock/density matrix 

The utility of block partitioning matrix computations is well understood
12

. However, 

partitioning the Fock matrix into blocks is not straightforward since the block nature of 

the Fock matrix is determined by the shell order in the basis set. However, the basis set 

may be sorted in such a way as to group same-size shells together. Reorganizing the basis 

set alone does not give the Fock matrix a uniform block structure since the basis set 

typically contains s , p , ... shells. This can be overcome by considering the entire Fock 
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matrix to be a meta-matrix consisting of sub matrices, each with a uniform block 

structure, determined by the corresponding shells. Consider a graphical depiction of such 

a matrix, as shown in Figure 1, showing a hypothetical meta-matrix with a non-uniform 

block structure organized as uniform matrices. The black lines designate the individual 

shell block boundaries, with all of the elements inside the block being in a contiguous 

memory segment.  The red graphs show the consecutive layout of blocks in memory, with 

connected blocks being in the same memory segment in that given order.  The blue lines 

designate the borders of sub matrices, in which all blocks within those sub matrices are of 

uniform dimensions. 

  

Figure 1. Meta-matrix with block structure 

If the programming language constructs allow, the meta-matrix can be given the usual 

matrix semantics that map individual element access to a specific block in the appropriate 

sub matrix. In C++ this can be accomplished by defining operator()(i,j). The 

effect is that a complex meta-matrix can have all three characteristics: sub matrix, block, 

and element-wise access. 

  

The second benefit of organizing the basis set according to shells is to allow efficient 

evaluation of multiple similar shell quartets on highly parallel architectures, such as 

graphical processing units (GPUs). If the shells are grouped together according to 

coefficients and exponents, as well as the angular momentum quantum numbers, then 

evaluation of such a block is guaranteed to have the same data except for the Cartesian 
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centers.  

 

If the Fock matrix needs to be sorted for computational efficiency, the density matrix can 

be permitted to reflect the desired order. Likewise, if other parts of the program expect 

the Fock matrix to be in a different order, once formed, the Fock matrix can be un-sorted. 

This is especially relevant if the Fock matrix is to be used by external programs which 

may not necessarily sort the basis set.  

3.2. Collapsing Fock Algorithm Loops 

The regular Fock matrix algorithm, Listing 4, becomes cumbersome if the work has to be 

divided among different parallel domains and different processors/accelerators. To make 

the work distribution easier to implement and more efficient, the four nested loops of the 

Fock algorithm can be collapsed into a single queue-like generator, as illustrated in 

Listing 5. The basic idea is to map a single index back to four loop indices.  

 

The advantage of using a queue rather than nested loops is that a queue can be 

transparently and easily parallelized. For the Fock algorithm, the queue tuples are 

generated on the fly, rather than stored at the expense of 4N  tuples.  

 

The internal counter employed in the queue can be a generic counter, for example, a 

distributed read-modify-write counter, which allows one to easily transform a seemingly 

single-node queue into a distributed queue.  

 
 
for l in N { 
  for j in N { 

    // loop bounds account for 8-fold symmetry 
    for k in max(l,j):N { 
      for i in j,k+1 { 

          ... 
      } 

    } 
  } 
} 

   

Listing 4. Fock looping 
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class Queue { 
    // initial values 
    counter = 0; 

    last = 0; 
    (i,j,k,l) = (0,0,0,0);  

    next() { 
        next = (i,j,k,l); 
        end = (counter++)+1; // advance counter 

        for last:end { 
            if (empty()) throw exception; // signal if empty 

            next = (i,j,k,l); 
            i += 1; // i loop 
            advance = (i >= (k+1)); // k loop 

            if (advance) { 
                k += 1; 

                i = j; 
            } 
            advance = advance and (k == N); // j loop 

            if (advance) { 
                j += 1; 

                k = max(j,l); 
                i = j; 
            } 

            advance = advance and (j == N); // l loop 
            if (advance) { 

                l += 1; 
                j = 0; 
                k = max(j,l); 

                i = j; 
            } 

        } 
        last = end; 
        return next; 

    } 
} 

... 
while (true) { 
    try: (i,j,k,l) = queue.next(); // get next tuple to evaluate 

    catch: break; // the end, break from the loop 
    ... 

} 

   

Listing 5. Fock task queue 

 

3.3. Exchanging bra/ket order 

Most of the integral algorithms, including the Rys Quadrature, prefer the general integral 

(pq|rs) over shells P,Q,R,S to be sorted such that  P Q,R S,P R . Exchanging the 

order inside the integral code adds complexity and has a performance penalty. But for the 
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purposes of a Hartree-Fock code, exchanging the order of the quartet indexes alone and of 

the corresponding sub matrices is sufficient. However, the screening must be done before 

changing the order if one is using an unmodified screening loop structure.  

3.4. Normalization Coefficients 

Integrals over functions with angular momentum higher than the P  shell must be 

normalized. The normalization can either be done in the integrals themselves or by 

absorbing the normalization coefficients into other terms. The advantage of removing 

normalization coefficients from the integrals is that the integral code is simpler when it is 

devoid of normalization coefficients.  

 

For the purposes of the HF algorithm, the following approach can be used to shift the 

normalization coefficients Ni from the integrals to the Fock (F) and density (D) matrices 

to form normalized matrices F* and D*:  

  
  
F

ij
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Therefore, normalization can be handled by first normalizing the density matrix, then 

performing the regular Fock algorithm, and normalizing the resulting Fock matrix.  

3.5. Multithreaded Implementation 

A multithreaded Fock algorithm allows one to reduce the memory overhead by 

maintaining only a single copy of the Fock and density matrices per node. The density 

matrix, which is read-only, does not need to be protected from conflicting updates. 

However, the Fock matrix is subject to conflicting simultaneous updates from multiple 

threads, known as race conditions. For example, evaluating integral quartets   (i, j,k,l)  

with values  (1,1,4,4)  and  (1,1,3,3)  requires an update to the Fock elements 

  F (k , l) F (1,1)  in both cases. If the two integral quartets are to be evaluated by two 

distinct threads, the access to the Fock elements must be synchronized so as to avoid race 

conditions.  

 

There is a number of ways this can be accomplished. For the best performance an 
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approach using a matrix block lock/mutex (mutual exclusion object) was chosen. Since 

the entire Fock matrix can be arbitrarily partitioned into blocks, each block can be given 

its own mutex that is locked when a thread is ready to update the corresponding block. 

However it is wasteful to lock the entire Fock matrix block while the integrals are being 

computed and contracted. A better alternative is for each thread to maintain up to six 

Fock buffers, 
  F(i, j)...F( j,l), which can then be accumulated into the main shared Fock 

matrix. The algorithm outline is in Listing 6.  

 

 

 

 
for (i,j,k,l) in ERI { 
    // thread buffers 
    Submatrix f(i,j), ..., f(j,l) 

    (f(i,j), ..., f(j,l)) = Contract(Integral(i,j,k,l), D) 
    // accumulates submatrix 

    for f(m,n) in ((f(i,j), ..., f(j,l))) { 
        F.lock(m,n) 
        F(m,n) += f(m,n) 

        F.unlock(m,n) 
    } 

} 

   

Listing 6. Shared Fock updates 

 

4. C++ Implementation Details 

Since the approach detailed in the current work is written in C++, the following libraries 

and techniques are available:  

 Boost libraries
13

  

 C++ meta-programming
14

, including boost::enable_if
15

 and 

boost::mpl
16

   

 C99 preprocessor and Boost Preprocessor
17

  

 OpenMP
18

  

The code relies heavily on template meta-programming to accommodate compile time 

requirements of the integral and Fock kernels and to reduce the amount of boiler-plate 

copy/paste. Various preprocessor tricks of the Boost Processor are used heavily as well. 

For example, to “transform” a runtime value into a compile time value, the Boost 

Preprocessor can be used to generate the transformation, e.g., Listing 7. 
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BOOST_PP_SEQ_FOR_EACH_PRODUCT will apply a macro ERI for each Cartesian 

quartet of shell types, automatically creating all possible handlers for a quartet followed 

by a special case if the quartet is invalid, i.e., not one of the TYPES in the listing below. 

 

 

 
#define TYPES (SP)(S)(P)(D)(F)//... 

 
void runtime(Quartet quartet) { 

    type a = quartet[0]; 
    type b = quartet[1]; 
    type c = quartet[2]; 

    type d = quartet[3]; 

 
#define ERI(r, types) \  
    if (a == BOOST_PP_SEQ_ELEM(0, types) && \  

        b == BOOST_PP_SEQ_ELEM(1, types) && \  
        c == BOOST_PP_SEQ_ELEM(2, types) && \  

        d == BOOST_PP_SEQ_ELEM(3, types)) { \  
        typedef shell_pair<BOOST_PP_SEQ_ELEM(0, types),      \  
                           BOOST_PP_SEQ_ELEM(1, types)> bra; \  

        typedef shell_pair<BOOST_PP_SEQ_ELEM(2, types),      \  
                           BOOST_PP_SEQ_ELEM(3, types)> ket; \  

        eri<bra,ket>(quartet); 

 
    BOOST_PP_SEQ_FOR_EACH_PRODUCT(ERI, (TYPES)(TYPES)(TYPES)(TYPES)) 
    { 

        throw invalid_quartet(); 
    } 
} 

   

Listing 7. Using preprocessor 

 

The multithreading was implemented using OpenMP. While the Boost Thread library is 

much more powerful and versatile than OpenMP, only a subset of the multithreading 

constructs were needed to make the code multithreaded, primarily the loop counter 

synchronization and mutex constructs. In addition to the above-mentioned libraries, other 

miscellaneous components from the Boost and Standard Template Library are used 

throughout.  

5. GPU Implementation 

There have been various GPU implementations for electron repulsion integrals; for 

example, the McMurchie-Davidson
19,20

, and Rys Quadrature
5b,21,22 

approaches. Early on, 

the GPU implementations primarily targeted single precision computations with   s , p  

functions only, using either CUDA C or accelerator statements. The current generation of 
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GPU hardware has a much smaller time difference for single vs. double precision, making 

the case for single precision less obvious.  

 

The authors have utilized double precision exclusively to reproduce the CPU results and 

to go well beyond s and p  functions. The GPU implementation was done using NVIDIA 

CUDA technology. In developing the GPU implementation of the Hartree Fock method, 

the following factors are considered:  

 High angular momentum and low angular momentum/highly contracted 

integrals are different in nature and warrant different implementation 

approaches.  

 The integral kernels must be able to evaluate many batches of integrals in 

one launch. By sorting according to the basis set, a large number of 

quartets, differing only in the atom centers, but not in shell primitives, can 

be generated. 

 The integrals must be contracted with the density D as soon as possible to 

reduce the memory overhead from 4n to 2n where n is the shell size order, 

e.g. n=6 for a Cartesian d-shell. Therefore, the entire integral quartet is 

never written into the device memory.  

 Contracting integrals with the density directly results in race conditions 

which must be accounted for.  

 Integral batches which cannot be evaluated on the device, must be done on 

the host.  

The current Fermi hardware has 32,768 registers and 48KB of shared memory. The 

number of concurrent thread blocks is 8. A typical integral kernel will use ~60 registers 

per thread and 6KB of shared memory. Therefore, up to 8 thread blocks can be executed 

simultaneously, 64 threads each. The 64 threads are executed in warps, with 32 threads 

per warp. The threads in each warp are implicitly synchronized but their execution is not 

implicitly synchronized with the other warp. In essence, a warp can be thought of as an 

independently executing unit. This fact can be used to partition work along the warp or 

sub-warp boundaries.  

 

The development of the integral kernels closely follows the CPU version: the 

implementation is split into general and low angular momentum kernels. The low angular 
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momentum kernels are parallelized over the contraction loop. In both cases, an efficient 

implementation requires that the type of integral be known at compile time. This is 

handled by implementing integrals using C++ templates, with the bra-ket type being a 

compile time parameter and the shell exponents and coefficients a runtime parameter. The 

shells, centers, and quartet lists are stored in the device memory. Regardless of the 

implementation, each kernel loads all three sets of data and forms the corresponding bra-

ket primitives in shared memory.  

5.1. General Integral Kernel 

The general integral kernel is applicable to most combinations of contraction order and 

bra-ket types. While the general kernel may not perform equally well for some 

combinations, these combinations can be handled by specialized kernels chosen at 

runtime. 

  

There are multiple ways one can approach the problem of implementing a general Rys 

Quadrature algorithm on the GPU architecture. The approach taken here is as follows:  

  

 All roots and weights are computed first and stored in the shared memory first.  

 Each thread is assigned a 3-D index corresponding to the recurrence and transfer 

computations it will perform, where the x index maps to an angular momentum, 

the y index maps to one of the three Cartesian coordinates , and the z index maps 

to root. 

 The x-index corresponds to either a bra or a ket index. Let abL be the total bra 

angular momentum a bL L  and N the number of roots. In general, 

  
(L

ab
1)*3* N  threads are needed to evaluate recurrence and ( ) * 3 *a bL N

 

threads are needed to evaluate transfer, with the higher value being the total 

number of threads required. 

 

In certain cases, e.g., if one or more of the shells are S (L=0), not all of the recurrence and 

transfer computations are needed; then, the number of threads will be smaller than 

  
(L

ab
1)*3* N . The computations are independent of one another in the y and z indices, 

but are dependent on the previous results of a thread with a different x-index (and the 

same y, z indices). Consider the graphical depiction (Fig. 2) of a transfer relation to form 
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a (fd| bra intermediate from a (hs| bra.  The y-axis corresponds to the first center of the 

bra, and the x-axis corresponds to the second center of the bra. Each index (p,q) depends 

on (p+1,q-1) and (p,q-1).  For example, the index (3,2) depends on (3,1) and (4,1) which 

in turn depend on (3,0), (4,0), (5,0).  The intermediate 
 (4,2), computed by thread 4 , 

depends on the value of 
 (5,1) computed by thread 5 . To ensure correctness, the work of 

both threads must be synchronized. If the threads are aligned to 2n
 boundaries, such they 

all fall within the same warp, thesynchronization is implicit. In other words, if the overall 

number of threads needed is 
  
(L

ab
1)*3* N , padding 

  
(L

ab
1)  to a power of 2 will 

ensure that all threads with the same   y,z  indices are in the same warp at the negligible 

expense of some idle threads. 

  

Figure 2. Transfer diagram to form   ( fd | bra 

There are three ways the mappings can be aligned to a warp:  

 

(1) The entire recurrence/transfer computation (if small enough) is mapped to 

a warp (or, a half-warp or a quarter-warp, etc). This holds if 

  
(L

ab
1)*3*N warp.  

(2) The xy dimension is aligned to a   2
n

 boundary. For example in the transfer 

figure above 5abL , the xy-boundary is therefore 16 threads since 

3 1 5a bL

 
and the next power of 2 is   2

n 16 . 
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(3) The x dimension is aligned to a 2n
 boundary. For example, if 

  
L
ab

7, the 

x-boundary is 8 threads: since the next power of 2 is 2 8
n

.  

 

Option (1) is preferred. If the first condition fails, the choice between options (2) and (3) 

depends on which one minimizes the number of threads needed to perform 

recurrence/transfer computations. For example, if 4
ab

L , recurrence/transfer option (2) 

needs 16 threads, while option (3) requires 24 threads per root (since the number shown 

for (3) is per one Cartesian index, it must be multiplied by 3). If 
  
L
ab

7, option (2) needs 

32 threads, while option (3) needs 24 threads. 

 

Once the intermediate 2D integrals are in shared memory, each thread computes a subset 

of integrals. The mapping between a thread/integral index and the corresponding 2D 

integrals index is stored in the main memory and looked up for each element. The index 

is stored in a four-element vector, with the fourth index containing the coefficient index 

for hybrid SP functions.  

 

Once all of the integrals are formed, they are transferred into the shared memory space 

previously used to store roots and intermediates. The exact number of integrals each 

thread computes depends on the size of the integral quartets and the number of threads 

launched. The number of threads depends mostly on the dimensions of the 

recurrence/transfer computations and the amount of shared memory used by the kernel. 

To accommodate those two requirements, a number of kernels are available with 2, 3, 4, 

or 8 multiples of a warp and the corresponding number of integrals per thread. During 

runtime, the kernel that maximizes the device occupancy is chosen.  

 

For the case in which the entire recurrence/transfer computation can be mapped to a 

single warp, the integrals can be partitioned to warps rather than to an entire thread block, 

with each warp assigned to evaluate a unique contraction.  

 

As implemented, the above approach is able to handle any quartet with a total angular 

momentum of 9 or less, for example   ( fd | dd) , including shells with hybrid sp 

coefficients. The limit of 9 is imposed by the Rys roots program.  
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5.2. Low Angular Momentum Integrals 

The most natural way to evaluate low angular momentum integrals is to assign individual 

quartets to a thread block and a single contraction to a thread, with each thread evaluating 

all integral elements corresponding to that contraction. However, this scheme becomes 

inefficient if the number of contractions is smaller than the number of threads in a block. 

This problem can be partially solved by assigning individual roots, rather than 

contractions, to a thread. For example, for a 
  (ps|ps)

 quartet this effectively doubles the 

number of tasks to distribute since for each contraction there are two roots generated.  

 

The low angular momentum kernels reuse the CPU kernel verbatim, with each device 

thread evaluating an individual root and all of the corresponding integrals, subsequently 

reduced into shared memory.  

 

Once implemented, the above approach does not saturate the threads. The above 

implementation was therefore modified to handle an individual quartet per warp, in 

essence assigning two quartets per thread block. As an additional benefit, shell primitive 

loads decrease by half.  

5.3. GPU Hartree-Fock Implementation 

It is not possible to implement a parallel version of the Fock contraction within a thread 

block in which all six Fock contributions can be evaluated in the single inner loop. The 

approach taken here is to split the six updates onto separate loops, such that each Fock 

element can be computed independently. The implementation is as follows: 

  

 One of the six integral/density loops is mapped to a warp. Hence, one 

thread block can contract and store concurrently one or more Fock tiles 

corresponding to the integral batch.  

 The individual Fock matrix elements are mapped uniquely to a thread in a 

warp.  

 The warp loads the density tile into shared memory.  

 The density tile is contracted with the integral batch and the Fock matrix 

element is stored in a register.  

 The Fock matrix is locked with an exclusive read/write lock, and a Fock 

matrix element is added to the device memory  
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 The mutex is unlocked and the warp proceeds to contract the next tile.  

 Both the density and Fock tiles are stored in a block manner, such that all 

elements of a tile are continuous in memory.  

 

 
 
lock(i,j) { 
  while (atomicCAS(mutex(i,j),1)) {} 

} 
unlock(i,j) { 
  mutex(i,j) = 0; 

} 

 
fock (i, j, k, l) { 
  shared G; // integrals 

  shared d(k,l); // density tile 
  d(k,l) = D(k,l); // load density tile 

  f = contract(g,d); // contract 
  lock(i,j); // obtain lock 
  F(i,j) += f; // add to main memory 

  unlock(i,j); // release lock 
} 

 
if (do_ij) fock(i, j, k, l); 

if (do_kl) fock(k, l, i, j); 
if (do_ik) fock(i, k, k, l); 

if (do_il) fock(i, l, k, l); 
if (do_jk) fock(j, k, i, l); 
if (do_jl) fock(j, l, i, k); 

 

 

Listing 8. GPU HF kernel 

 

Only one contraction out of six has a simple indexing; the other five contractions traverse 

the integrals with a non-contiguous stride, which must be accounted for.  

 

The current CUDA implementation does not provide a built-in device memory mutex, 

however the mutex can be implemented with the atomic compare and swap operation, 

atomicCAS. The mutex implementation, summarized in Listing 8, will spin until a zero 

is read. Rather than locking the entire Fock matrix, only the individual tiles are locked at 

a time.  

  

To achieve performance in the presence of the mutex, the quartets must be traversed so 

that the indices are not too similar; otherwise one would encounter mutex contention. For 

example, processing quartets  (0,0,0,0),(1,0,0,0),...  would result in a high number of 

collisions as integral quartets are prescreened sequentially. This problem can be avoided 
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by traversing the quartet list in non-one strides: for example, in strides of 32 in a round-

robin manner, provided the quartet lists are on the order of thousands of entries. Since the 

basis set is sorted to begin with, the generated integral lists are typically well into the 

thousands.  

5.4. Host/GPU Integration 

The GPU device is driven by a separate host thread. First, the density matrix is copied 

into the device memory and the Fock matrix is initialized to zeros. The GPU thread will 

then request a task from the task queue. If the quartet task can be evaluated by a device 

kernel, the quartets are prescreened on the host, asynchronously copied to the device and 

the kernel is launched, asynchronously. This leaves the host thread to either prescreen the 

next batch or to evaluate those quartets that cannot be handled on the device. This 

approach allows for the overlap of the CPU/GPU execution. As will be shown in the 

performance section, the number of unhandled quartets is small, even with a high angular 

momentum basis set. Once the tasks are exhausted, the Fock matrix on the device is 

merged into the host.  

6. Performance 

The newly implemented HF algorithm was compared against the standard GAMESS
23

 

code, using the Rys Quadrature method only, as well as the default GAMESS option 

which chooses the optimal integral package according to the integral types
24

. 

 

The GAMESS code was compiled with the following command:  

gfortran -O3 -msse3  

The new implementation was compiled with:  

g++ -O3 -msse3  

The gcc version was 4.4.3 for both gfortran and g++. The benchmarks were executed on 

two Intel Xeon E5405 2.00 GHz CPUs.  

 

The timing comparisons of the new C++ CPU code with the GAMESS code are listed in 

Table 1.  All of the timings are given in seconds, with C++ and GAMESS runs set to 

utilize a single core. The following should be kept in mind when interpreting the results:  

 The rotated axis algorithm and its variations are algorithmically much less 

complex than the Rys Quadrature algorithm for contracted shells, like 
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those typically found in low angular momentum basis sets, so GAMESS 

calculations that use only the Rys algorithm (for comparison purposes) 

will naturally take longer than the GAMESS default (optimal) option noted 

above.  

 The rotated axis code
24

 in GAMESS has been re-implemented to take 

some advantage of modern processors.  

 The Rys Quadrature algorithm is advantageous for small contraction/high 

angular momentum basis sets. The implementation of the Rys Quadrature 

algorithm in GAMESS is the original implementation from the HONDO
25

 

package and does not take into account modern processor architecture.  

 For large basis sets with f  functions the relative number of shell quartets 

handled by the Rys Quadrature algorithm is significantly higher than for 

smaller basis sets.  

 

The test computations were performed on the molecules Cocaine, Taxol, and 

Valinomycin using basis sets that incorporate a different number of s , p , sp , d , and f  

shells. Cocaine is the smallest of the three molecules and Valinomycin is the largest. The 

improvement over the original Rys Quadrature is on the order of 30-40% for all cases. 

When compared to the default integral option in GAMESS, which picks the Rys 

Quadrature only if f  and higher angular momentum functions are present, the 

performance is either higher, lower, or the same, depending on the number of d  

functions, the size of the basis set and correspondingly the memory requirement of the 

density and Fock matrices. 

  

The rewritten Rys Quadrature algorithm is still much slower than the rotated-shell axis 

code when only   s, p  functions are involved. The difference is most pronounced when the 

total basis set is small. The difference diminishes with increasing Fock and density matrix 

sizes as memory locality becomes more important. For example, for the Cocaine 6-31G 

computation, the rotated shell axis code is 75% faster, but only 30% faster with the much 

larger Valinomycin 6-31G computation.  

 

When d  functions are present, the C++ Rys Quadrature code performs better than the 

current packages as the basis set size increases. For Taxol and Valinomycin, the new CPU 
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approach outperforms the current GAMESS codes by a few percent. The new code 

clearly becomes faster if f  functions are present. In the best case scenario, it is 31% 

faster than the GAMESS integral packages, due to both better memory locality and the 

higher fraction of quartets with higher angular momentum. Overall, the new Hartree-Fock 

implementation is scalable and efficient, improving the overall performance by as much 

as 30%.  

 

Table 1. C++ Rys method CPU performance vs GAMESS 

 

System  GAMESS
1
  GAMESS/Rys

2
  C++

3
 Improvement

4
 (%)   

Cocaine 6-31G  21.3  52.4  37.2  -74.6/29.0 %   

Cocaine 6-31G(d)  65.0  112.9  75.2  -15.7/33.4 %   

Cocaine 6-31++G(d,p)  402.7  592.0  405.1  -0.60/31.6 %   

Cocaine 6-311++G(2df,2p)  3424.4  3686.4  2356.3  31.2/36.1 %   

Taxol 6-31G  310.2  691.6  474.1  -52.8/31.4 %   

Taxol 6-31G(d)  1104.2  1729.2  1040.0  5.8/39.8 %   

Taxol 6-31++G(d,p)  11225.9  15380.5  10288.0  8.4/33.1 %   

Valinomycin 6-31G  853.6  1700.7  1104.4  -29.3/35.3 %   

Valinomycin 6-31G(d)  2285.0  3445.7  2104.8  7.9/38.9 %   

  All times are in seconds on a single core 

1. GAMESS using various ERI methods (default) 

2. GAMESS using only Rys method 

3. Newly implemented C++ Rys method 

4. Improvement over default GAMESS/ improvement over Rys-only GAMESS 

 

The comparison between the C++ CPU and GPU codes is summarized in Tables 2, 3, 4, 

broken down by the relative time a particular shell quartet takes. A quartet size is the 

product of the shell sizes in a quartet. For example, 
  (ps|ss) quartets are of size 3 

(3*1*1*1) and   (dd | dd)  quartets are of size 1296 (6*6*6*6). The benchmark molecule is 

Taxol and the three basis sets are cc-pVDZ, cc-pVTZ, and 6-31G(d)
26

. The correlation 

consistent basis sets have contraction orders as high as 4096, while the Pople basis sets 

rely heavily on hybrid sp  shells. Note that a large fraction of integral time is spent 

computing the multitude of integrals with p  shells. In fact, for the cc-pVDZ basis set, 
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60% of the total time is spent evaluating the smallest (in terms of quartet size) four 

integrals. 

The GPU speed-ups over the single CPU core times (Tables 2,3,4) vary from 17.5x to 12x 

for the cc-pVTZ basis set. The specialized low-angular momentum quartet kernels 

perform fairly well, with the lowest speed-up for the last specialized kernel with two sp  

shells, size 16. The speed-up consequently drops for the general kernel. The performance 

improves as the quartet gets bigger. The number of slower kernels in the shell size 16-100 

range is rather high, and it tends to lower the overall speed-up.  

Table 2. Taxol/cc-pVDZ GPU performance 

 

quartet size
1
  CPU % by time

2
  GPU speed-up (x) 

3
 

1  14.2  35.2   

3  22.8  23.0   

6  6.6  18.5   

9  19.3  17.4   

18  9.6  14.5   

27  7.0  9.6   

36  1.6  11.4   

54  8.7  12.6   

81  1.9  12.8   

108  3.3  17.2   

162  2.5  16.0   

216  0.4  14.3   

324  1.6  16.7   

648  0.4  17.9   

1296  0.1  15.0   

overall 
4
 5068.66 s  17.5   

1
 product of 4 shell sizes, e.g., s=1, p=3, sp=4, d=6 

2
 fraction of total time computing quartet of this size 

3
 GPU speed-up (relative to C++ CPU) for quartets of this size 

4
 total time and total speed-up 
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Table 3. Taxol/cc-pVTZ GPU performance 

 

quartet size
1
  CPU % by time

2
  GPU speed-up (x)

3
   

1  4.3  25.9   

3  8.5  17.5   

6  4.6  15.1   

9  8.4  13.8   

10  1.7  14.6   

18  8.0  11.6   

27  3.7  8.2   

30  3.7  9.3   

36  2.5  10.4   

54  8.3  11.4   

60  2.5  13.3   

81  1.1  11.4   

90  4.1  15.1   

100  0.8  15.5   

108  5.8  15.9   

162  2.9  15.0   

180  5.2  14.0   

216  1.2  14.1   

270  1.7  17.3   

300  1.4  15.8   

324  3.5  17.3   

360  1.7  15.4   

540  3.6  18.9   

600  1.1  15.7   

648  1.6  17.9   

900  1.1  18.7   

1000  0.2  15.0   

1080  2.9  15.3   

1296  0.4  15.8   

1800  1.6  19.4   

2160  0.7  20.1   

3000  0.3  n/a   

3600  0.7  n/a   

6000  0.3  n/a   

10000  0.0  n/a   

Overall
4
  35110.4 s  12.0   

1
 product of 4 shell sizes, e.g., s=1, p=3, sp=4, d=6 

2
 fraction of total time computing quartet of this size 

3
 GPU speed-up (relative to C++ CPU) for quartets of this size 

4
 total time and total speed-up 
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Table 4. Taxol/6-31G(d) GPU performance 

 

quartet size
1
  CPU % by time

2
  GPU speed-up (x)

3
   

1  1.7  28.5   

4  6.5  20.9   

6  1.9  18.8   

16  12.3  13.1   

24  6.6  10.6   

36  1.1  11.7   

64  13.9  13.7   

96  16.8  15.8   

144  5.9  19.5   

216  0.6  15.4   

256  12.4  23.5   

384  11.5  20.9   

576  7.0  20.2   

864  1.7  21.3   

1296  0.2  16.6   

Overall
4
  1031.94 s  16.6   

1
 product of 4 shell sizes, e.g., s=1, p=3, sp=4, d=6 

2
 fraction of total time computing quartet of this size 

3
 GPU speed-up (relative to C++ CPU) for quartets of this size 

4
 total time and total speed-up 

 

CPU and GPU execution can run together to occupy all available resources on the nodes. 

Table 5 shows the wall clock time required to perform a single SCF iteration of fairly 

large computations.  To showcase various points of performance and comparability, the 

times are given for combinations of serial and parallel execution with or without GPU. 
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Table 5. Combined CPU/GPU performance 

 

System 1 core 8 cores 1 GPU 8 cores + 1 GPU 

Taxol 6-31G  474.1 60.2 37.4 26.5 

Taxol 6-31G(d) 1040.0 132.2 80.2 53.0 

Taxol 6-31G(2d,2p) 3429.8 442.3 290.0 178.1 

Taxol 6-31++G(d,p)  10288.0  1243.9 984.5 539.9 

Valinomycin 6-31G 1104.4  143.9 92.4 60.0 

Valinomycin 6-31G(d)  2104.8 270.7 189.6 116.9 

Valinomycin 6-31G(2d,2p) 7439.3 964.0 554.0 328.0 

All times are in seconds 

The times include all steps to evaluate a single iteration energy, including diagonalization 

 

As can be seen, the multithreaded implementation is efficient, consistently achieving over 

95% parallel efficiency even for the small computations.  Although not shown, the 

implementation scales well beyond 8 threads.  In case of the largest Valinomycin 

benchmark, combining CPU and GPU execution brought a calculation that took more 

than two hours to just over 5 minutes.   

 

7. Conclusions 

The newly implemented Rys Quadrature and Fock Matrix algorithms, implemented as a 

stand-alone C++ library, with C and Fortran bindings, provides on the order of 40% 

improvement over the traditional Fortran Rys Quadrature and performance that is similar 

to that of less computationally intensive algorithms. The library is fully multithreaded and 

has favorable scaling across eight cores or more cores within a single node.  The library 

has a simple interface to evaluate a block of integrals as well several compile time 

parameters to optimize performance.  Although algorithmically much more expensive, the 

new Rys quadrature implementation uses a processor effectively to match and beat the 

performance of recently implemented algorithms, such as those found in GAMESS
24

, 

which have much less algorithmic complexity for small angular momentum integrals. 
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The GPU version, adopted from the CPU version, shows speed-ups as high as 17.5x. 

Importantly, this speedup is relative to the newly optimized C++ CPU code, not to the 

original legacy Fortran code. The Rys Quadrature however does not scale well in the mid-

size shell quartets. Port of a Rotated-Shell axis code is likely to increase the overall 

performance to 20X or higher.  
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Chapter 3.  A New Algorithm for Second Order Perturbation Theory 

Andrey Asadchev and Mark S. Gordon 

 

Submitted to the  Journal of Chemical Theory and Computation 

Abstract 

A new second order perturbation theory (MP2) algorithm is presented for closed shell 

energy evaluations. The new algorithm has a significantly lower memory footprint, a 

lower FLOP (floating point operations) count, and a transparent approach for the 

disk/distributed memory storage of the MP2 amplitudes. The algorithm works equally 

well on a single workstation, small cluster, and large Cray cluster. The new algorithm 

allows one to perform large calculations with thousands of basis functions in a matter of 

hours on a single workstation. While traditional MP2 calculations are frequently eclipsed 

by density fitting and resolution of the identity methods, the approaches and lessons 

learned in the implementation presented here are applicable beyond the MP2 algorithm.   

 

1. Introduction 

 

The integral transformation, also known as the 4-index transformation, is required for 

many electronic structure computations, including methods that include electron 

correlation and the analytic computation of energy second derivatives. Of particular 

interest in the present work is the use of this transformation in second order perturbation 

theory (called MP2 for second order Moller-Plesset or MBPT2 for second order many 

body perturbation theory). In general, the 4-index transformation typically transforms 

atomic integrals to molecular integrals via the simple formula:  

 

( ) ( ) ( ) ( ) ( )( )
p q r s

ij kl C i p C j q C k r C l s pq rs    (1) 

 

Using a common convention, occupied molecular orbitals (o) are designated by indices 

i j , virtual molecular orbitals ( v ) are designated by indices a b , and atomic 

orbitals ( n ) are designated by indices p q r s.  

 

Typically, several classes of molecular integrals are needed, e.g., ( )ai bj , ( )ab ci , etc. 
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In the particular case of MP2, one only needs ( )ai bj integrals to compute the amplitudes 

and energy, respectively:  

 

 
2( ) ( )ab

ij

i j a b

ai bj bi aj
t                          (2) 

 

 
2 ( )ab

MP ij

ab ij

E t ai bj  (3) 

 

In Eq. (2) the denominator contains the orbital energies for the occupied and virtual 

molecular orbitals (MOs). Note that only the ( )ai bj  integrals (sometimes called (vo|vo) 

integrals) are needed to form the ab

ijt  MP2 amplitudes and the MP2 energy. The ( )ai bj  

integrals, and consequently the t  amplitudes have symmetry such that ( ) ( )ai bj bj ai  

which can be used to halve the storage requirements and the number of computations.  

 

The MP2 energy calculation scales as   ON 4  and requires 2 2O V  integral storage, where N, 

O, and V refer to the number of atomic basis functions, the number of occupied MOs and 

the number of virtual MOs, respectively. The MP2 method is the least computationally 

demanding many-body method; it is also the many body method with the lowest compute 

to I/O ratio. 

  

A number of different MP2 algorithms have been developed over the years
1-6

, due to the 

simplicity of the method and its popularity.  The above methods all have advantages and 

shortcomings.  One of the early algorithms is the serial direct method
1
; the integrals are 

computed on-the-fly and the algorithm does not require any storage other than core 

memory.  However, if the storage required is greater than the available memory, the 

integrals must be re-evaluated, making the algorithm expensive.  The semi-direct serial 

algorithm
2 

avoids integral re-evaluation by storing partially transformed integrals.  

However, the algorithm does not scale beyond a few hundred basis functions.  The 

parallel direct method
3
 scales well as it requires little communication, but it comes at a 

very high cost of recomputing the integrals. The distributed memory algorithms
4-6

 run in 

parallel, and, using distributed memory to store partially transformed integrals, avoid 

recomputing the integrals.  However, the I/O overhead is high due to poor data locality 

and the core memory overhead limits the size of the problem, in terms of the numbers of 

basis functions and occupied orbitals.  Furthermore, the algorithm
6
, which is implemented 
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in GAMESS
7
, lacks efficiency, because the innermost loops have an unfavorable 

structure and do not use optimized math routines.  The GAMESS disk-based parallel 

algorithm
8
 is a recent improvement over the previously developed algorithms:  it has 

favorable I/O patterns, fast execution, and low memory overhead.  Its only drawback is 

the reliance on fast disk, which is often not available on large clusters with only network 

file systems.   

 

The aim of the present work is to improve the MP2 algorithm according to the following 

guidelines:  

 Keep the number of operations low and use optimized math libraries to carry out 

all integral transformations. 

 The memory overhead must be low enough to allow computations with several 

thousand basis functions and several hundred occupied orbitals on current 

computer hardware.  This means that per-core memory overhead must not be 

more than a gigabyte or two. 

 The algorithm must be adaptable to using either a file system or distributed 

memory as a storage medium.  Furthermore, the algorithm should be able to run 

efficiently on systems with various memory, storage, and interconnect 

configurations.  

 The I/O overhead must be low enough to run off a network file system efficiently  

With these guidelines in mind, a new algorithm is developed that runs at least as fast as 

the current fastest parallel implementation
8
, runs equally well on a single workstation and 

a 1024-core Cray XE6 cluster, can use either disk or distributed memory storage, and can 

handle an input problem of more than 4000 basis functions.  

2. Matrix chaining 

There exists a simple matrix multiplication property
9
, which, surprisingly, is not very 

well-known in computational chemistry. Given three (or more) matrices (e.g., B, C, D), 

the matrices can be multiplied without changing the outcome by two different orders: 

 ( )A BC D       (4) 

( )A B CD      (5) 

At first glance, the above fact may appear to be uninteresting, until one considers the 

number of operations required for the two expressions. Suppose, for example, that the 
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general dimensions are ( )B k l , ( )C l m , ( )D m n , and ( )A k n . The number of operations 

are ( )klm kmn  and ( lmn kln ) for Eqs. (1) and (2), respectively. Of course, if B, C, and 

D are all square matrices with the same dimension, there is no difference between 

( )klm kmn  and ( lmn kln ).    

 

 

The difference in the number of operations that are required for Eq. (4) vs. Eq. (5) can be 

exploited to dramatically reduce the number of operations in integral transformations.  

Note that the un-factorized 4 2 2N O V  complexity of the integral transformation in Eq. (1) 

can be reduced to either 14N O  or 4 1N V by doing one transformation at a time at the cost 

of the storage of partially transformed intermediates. Similar to the multiplication 

schemes described by Eqs. 4 and 5, the integral transformation can be applied in different 

orders.  Suppose, for example, the integral transformation is applied in the naive left-to-

right order, virtual index first:  

 

  

(ai | bj)
s

C( j,s)
r

C(b,r)
q

C(i,q)
p

C(a, p)( pq | rs)         (6) 

 

Then, the total number of operations is: 

   VN 4 VON 3 V 2ON 2 V 2O2N VN(N 3 ON 2 VON VO2)    (7) 

 

On the other hand, if the transformation is applied occupied index first, 

 

  

(ij | ab)
r

C(b,r)
p

C(a, p)
s

C( j,s)
q

C(i,q)( pq | rs)              (8) 

 

 then the number of operations is:  

 

   ON 4 O2N 3 VO2N 2 V 2O2N ON(N 3 ON 2 VON V 2O)   (9) 

 

The expressions in Eqs. (7) and (9) differ by a factor  V O . For correlated calculations, 

one expects  V O . Therefore, the computational savings obtained by using Eq. (8) 

rather than Eq. (6) can be significant. The second benefit comes from a reduced memory 

requirement. Since the first two (inner) transformations contract the first two atomic 

indices to occupied indices, rather than one virtual/one occupied, the entire tensor is 

reduced to   (o o n n)  storage, rather than the much larger   (v o n n)  storage. For example, 

with an (H2O)19 water cluster and the aug-cc-pVQZ basis set, the ratio of the two 
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approaches is 12.3 times with respect to the number of operations and memory.  

3. General Algorithm Considerations 

To have a scalable algorithm, special attention needs to be paid to the memory footprint, 

the I/O patterns, and the I/O optimization by means of aggregation of smaller transfers 

into larger blocks.  

3.1. Memory 

The algorithm must have a small memory foot print, under 1GB per core on current 

hardware, even for large computations with several thousand basis functions. In terms of 

basis functions and shells, the memory overhead must be on the order of 2 2M O , where M 

is some adjustable blocking factor, for example the size of the largest shell in the basis 

set. Otherwise, any significant computation would require nodes with ten or more 

gigabytes of memory per core. For example, a computation with 3000 basis functions and 

300 occupied orbitals would require 22GB per core if memory were to scale as 2N O . 

The blocking factor must be adjustable to adapt to computers with different number of 

cores and memory.  

3.2. I/O Considerations 

For any significant problem size, the sizes of the integral arrays are too great to store in 

core memory. GAMESS, for example has several MP2 algorithms, two of which are 

parallel disk-only
8
 and distributed memory

6
 implementations. However, using modern 

programming techniques, the same algorithm can be adapted to both disk-based and 

distributed memory-based approaches. The efficient access patterns between distributed 

memory and disk are the same: large contiguous transfers are preferred. Typically, a disk-

based method has much worse throughput than one that is based on distributed memory. 

If an algorithm works well with disk, it is guaranteed to work well with distributed 

memory, even when running over slow Ethernet networks. The general efficacy for using 

disk has been outlined by Ford, Janowski and Pulay
10

: An important consideration is that 

individual research groups may not have access to computers with large memory, but 

access to workstations with large fast disks is very common. There is one important 

detail: due to buffering, writes tend to be significantly faster than reads. Therefore, 

algorithms that both read and write large datasets should be optimized in favor of the read 

operations.  
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The storage access latency can be hidden by overlapping I/O and computations. This can 

be accomplished either by having a number of threads perform computations and I/O 

independently of one another, or by having a single I/O thread perform data transfers 

while the other thread performs computations. 

  

Implementation transparency; e.g., distributed memory or file implementation, is easily 

accomplished using polymorphic functions; i.e., function calls that may resolve to two or 

more implementations during runtime without affecting the logic of the caller.  For 

example, the MP2 program would choose to use distributed memory if enough is 

available; otherwise it would default to the file system backend.  But regardless of the 

runtime decision, the algorithm itself and its implementation would be exactly the same. 

In C++, the language of the present implementation, this is done using virtual 

functions.  

3.3. File I/O considerations 

Two file formats, HDF5
11

 and NetCDF
12

, and their corresponding libraries allow easy 

manipulation of multidimensional scientific data on a file system. For the purpose of 

implementing dense tensor storage, the two file formats are comparable in performance 

and capabilities.  

 

Storing data on a single node is straightforward. However, parallel storage requires a 

parallel file system. There are a number of parallel file systems, for example PVFS
13

 and 

Lustre
14

. PVFS is an easily configurable file system, suitable for local clusters. Lustre is a 

more complicated file system, found for example on large Cray computers. Regardless of 

a particular file system, the principle is similar to that of RAID0
15

 an entire file is striped 

over a number of I/O nodes. The performance of a parallel file system primarily depends 

on the stripe size and the number of I/O nodes. Both HDF5 and NetCDF have parallel I/O 

capabilities.  

4. Naive Approach 

A simple MP2 approach is described in Listing 1.  
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allocate V(O*O/2,N,N); // (ia|jb) storage 
for S in Shells { 

  for Q <= S { 
    for R in Shells { 
      for P in Shells { 

        // skip insignificant ints 
        if (!screen(P,Q,R,S)) continue; 
        t1(i,R,Q,S) = eri(P,Q,R,S)*C(i,P); 
      } 

      t2(i,j,Q,S) = t1(i,R,Q,S)*C(j,R); 
    } 
    // exploit symmetry 

    V.store(t2(ij,Q,S)); 
    V.store(t2(ji,S,Q)); 
  } 
} 

// 3rd index 
for s in N { 
  t2(ij,Q) = V(ij,Q,s); // load NO^2 tile 

  t3(ij,a) = t2(ij,Q)*C(a,Q); // transform 
  V(ij,a,s) = t3(ij,a)); // store VO^2 tile 
} 
// 4th index + energy computation 

for a in V { 
  t3(ij,S) = V.load(ij,a,S); // load NO^2 tile 
  t4(ij,b) = t3(ij,S)*C(b,S); // transform 
  E += Energy(t4); // evaluate energy 

} 

   

Listing 1. Naive approach 

 

The main points about the simple implementation are:  

 The integral symmetry is exploited in the Q, S shells. The half transformed 

integrals 2t  are written as triangular matrices,  i j , as well as its transpose  j i . 

If one is running on multiple cores, each Q, S pair can be evaluated independently, 

allowing one to benefit from overlapping computation/write. 

 The integral computation and first index transformation are screened using 

the Schwarz method. Subsequent transformations are not screened.  

 The matrix transformations can be done using the BLAS matrix routine. 

Several shells can be transformed at the same time to increase efficiency. The 

temporary memory is on the order of 2 2( )O M .  

 The 3rd transformation is straightforward. The required temporary 
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memory is 2( 2)O N  where N  is the number of basis functions.  

 The fourth transformation requires noncontiguous read. As mentioned 

above, the disk is not efficient enough to handle noncontiguous read. For a large 

problem, the 4th step (i.e., the 4
th

 index transformation) becomes increasingly 

slow, rendering this approach extremely inefficient.  

5. Better Algorithm 

What is desired is an algorithm that still exploits symmetry and is also able to load 

integrals with untransformed indexes contiguously to maximize throughput. Suppose the 

half-transformed integrals 2t  are stored as a 2( )t N N ij  array, where N is the number 

of basis functions, and i, j index the already transformed occupied molecular orbitals. 

Then, it would be a simple matter of reading contiguous blocks corresponding to an 

occupied index, transforming these blocks, and evaluating the energy, all at the cost of a 

single read. Note that the quantity N N  is relatively small, only 200MB for 5000 basis 

functions.  

 

The problem is then how to write such data efficiently since it is generated as  a ( )ij Q S  

shell pair at the time. Writing individual shell pairs Q, S at a time to form a ( )QS ij  set is 

inefficient. For example, in the case of an s-shell pair, it would require a long 

noncontiguous write. However, to generate the occupied transformation, very little 

memory is needed. This fact can be exploited to evaluate and to write a block of 2M  

functions at a time. For example, assuming 500 occupied orbitals, the working memory 

required is 1MB per shell function. Therefore, a block 2M  of 256 functions (e.g. 16 sp-

shell pairs) requires only 256MB, but those 16 separate writes can now be aggregated into 

a single large write. By writing ( )QS ij  and its symmetric transpose ( )SQ ji  next to each 

other, the contiguous section of the write can be further doubled.  

 

The fact that the virtual index transformation is also relatively small in terms of memory 

can be used to further improve the I/O. If an entire node has 2 GB of memory, 10 

( )Q S ij  blocks can be loaded at once. This means the tensor storage can be re-

dimensioned from 2( 2)N N O  to 2( (2 ))B N N O B , with 10B  in the example 

considered here, and consequently the writes can now be ( )B QS ij B , with atomic and 
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occupied orbitals interleaved. If 2 2B O  then the algorithm can be performed in-core. 

The graphical depiction of the access patterns is outlined in Figure 1.  

  

Figure 1. Integral access patterns.   

(a) 
Thread put (shaded) refers to thread I/O to build half-transformed integrals using blocking and 

symmetry. 

(b) 
Node get (shaded) refers to node-wide I/O to retrieve a contiguous block of half-transformed 

integrals. 

 

 

Combining the above ideas, one can develop the following algorithm, Listing 2, which 

has contiguous writes of size 2(2 )M B  and reads of size 2( )N B , with M  and B  

factors determined by setting runtime memory limits.  
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B = ...; // some blocking factor, according to available memory 
allocate V( N*N*B, (O^2/2)/B ); 

// loop over QS pairs in blocks of M functions  
for (S,Q) in Blocks(Q <= S, M) { 

  for R in Shells.blocks { // loop over R shell blocks 
    for P in Shells.blocks { loop over P shell blocks 
      // compute ERIs, screening out insignificant integrals 

      eri.screen(P,Q,R,S)); 
      t_(i,S,R,Q) = eri(S,R,Q,P)*C(i,P); // 1st transform 
      t1(i,S,Q,R) += t_(i,S,R,Q); 
    }       

    t2(j,i,S,Q) = t1(i,S,Q,R)*C(j,R); // 2nd transform 
  } 
  t(QSB,ij/B) = t2(j,i,S,Q); // the shell order is scrambled 

  V(QSB,ij/B) = t(QSB,ij/B); // write block 
  V(SQB,ji/B) = t(QSB,ij/B); // and symmetrical transpose 
} 
// 3+4 index transformation and energy 

for ij in (O^2/2)/B { // loop over occ. blocks 
  t(QSB) = V(QSB,ij); // load scrambled untransformed block 
  for (i,j) in B { // loop over occ. indices 

    t2(Q,S) = t(QS(i,j)); // unscramble shell order 
    t3(a,S) = t2(Q,S)*C(a,Q); // transform 
    t4(a,b) = t3(a,S)*C(b,S); 
    E += Energy(t4); // compute energy 

  } 
} 

   

Listing 2. Better approach 

 

 

The main points regarding the above implementation are:  

 The integral symmetry is exploited in the Q,S shells. The half-transformed 

integrals are written independently and can be computed in parallel.  

 The Q, S list is processed in terms of blocks of shell pairs, rather than 

individual shell pairs. The optimal block size will depend on the available 

memory. The bigger the block size, the better in general.  

 The transformed integrals are scrambled such that shells are interleaved 

with blocks of ij  indices of size B. The contiguous size of this noncontiguous 

write is 22 M B .  
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 The transformation of the 3
rd

 and 4
th

 indexes reads the contiguous 

interleaved blocks. The shell order is unscrambled one occupied pair at a time, the 

unscrambled block is transformed and the corresponding energy is computed.  

 The read operation to fetch the next block can be overlapped with the 

computations.  

The two innermost transformations are responsible for most of the computational work, 

therefore it is important to have these two as efficient as possible in terms of performance 

and memory footprint. For any given shell pair ( )q s , the entire ( )P R  electron repulsion 

integral (ERI) list is evaluated in terms of blocks of identical shells, to minimize integral 

initialization overhead. Each individual block is contracted to the first occupied index. 

Once a given R  block is finished, it is then transformed to the second occupied index. 

Each transformation can be carried out using dgemm, making sure that the screened out 

integrals are absent from the transformation.  

6. Performance 

A number of benchmarks are useful to judge the performance, scalability, and flexibility 

of the algorithm:  

 How does the new approach compare with similar algorithms?  

 How does the network interface affect performance?  

 What is the relative time spent in ERI, transformations, and I/O?  

 

The two computer systems used to carry out the benchmarks are: 

 Exalted, an Intel cluster connected by InfiniBand (IB).  Each node has one 6-core 

Intel X5650 processor, 24 GB of RAM, one Fermi C2050 graphics processor, and   

two hard drives in a RAID0 configuration. 

 Cray XK6, with Gemini interconnect.  Each node has two 16-core AMD 6200 

processors, 64 GB of RAM; Lustre parallel file system, 8 I/O nodes. 

 

All inputs used to carry out the benchmarks are listed in Table 1 together with the storage 

required for the half-transformed integrals.  The new implementation is referred to as 

MP2++ for clarity. 
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Table 1. Benchmark Specifications 

Input   # Basis 

functions 

# Occupied 

Orbitals  

# Virtual 

Orbitals  

Storage 

Required 

(GB) 

Taxol/6-31G  660  164 434 47 

Taxol/6-31G(d)  1032  164  806  115 

Taxol/cc-pVDZ 1185 164 959 151 

Taxol/aug-cc-pVDZ 2009 164 1659 434 

19H2O/aug-cc-pVTZ 1995 76 1653 92 

Valinomycin/cc-PVTZ 4080 222 3300 3300 

 

 

First, compare the performance of the new MP2++ CPU-based algorithm to the DDI and 

IMS implementations in GAMESS on the Exalted cluster connected by InfiniBand. The 

two inputs are a Taxol molecule, with the small 6-31G and the larger 6-31G(d) basis set, 

shown in Table 2.  Due to the distributed memory (DM) requirement, the DDI algorithm 

cannot even run on a single node unless the input (i.e., basis set) size is very small.  

Furthermore, the DDI code is slow compared to both the IMS algorithm and the new 

implementation, by more than a factor of 10. Furthermore, the DDI MP2 memory 

requirement scales as 2ON  making it difficult to perform large calculations: A problem 

larger than 1000 atomic basis functions would require more than 1GB of local memory 

per core, leaving little room to scale.  

Table 2. Exalted Benchmarks, compared to DDI
6
 and IMS

8
. 

Input  Cores/Nodes  Algorithm  Storage/Network Time(mins)
*
 

Taxol/6-31G  24/4  DDI  DM/IB 39.7  

IMS Disk/IB 3.7 

MP2++ DM/IB 3.1 

Taxol/6-31G(d) 36/6  DDI  DM/IB 86.3  

IMS Disk/IB 7.5 

MP2++ DM/IB 5.4 

Taxol/cc-pVDZ 6/1  IMS  Disk/IB  116.6 

MP2++ Disk/IB 76.0 

60/10 IMS Disk/IB 12.7 

MP2++ DM/IB 7.9
(1)

 

DM/1Gbe 19.3 

(H2O)19/aug-cc-pVTZ 6/1  IMS  Disk/IB  858.5 

MP2++ Disk/IB 498.3 

60/10 IMS Disk/IB 121.0 

MP2++ DM/IB 49.9
(2)

 

DM/1Gbe 54.5 

* Superscripts 
(1),(2)

 refer to computation breakdown, shown in Table 3. 
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The next set of benchmarks, to illustrate the advantage of the new approach over the IMS 

algorithm, are Taxol/cc-pVDZ and (H2O)19/aug-cc-pVTZ, given in Table 2. The first 

example, Taxol/cc-pVDZ, is less computationally intensive but requires 50% more 

storage (and consequently I/O), whereas the second example, (H2O)19/aug-cc-pVTZ, is 

computationally heavy due to the presence of diffuse functions.  The new implementation 

is a clear improvement over the existing IMS disk algorithm, especially when diffuse 

functions are present, being faster by almost a factor of two. The new implementation 

scales on a small cluster, even when running over the 1Gbe Ethernet interface. The more 

I/O bound Taxol/cc-pVDZ calculation performance deteriorates quickly. For the 

computationally heavy water cluster input, the difference between Ethernet and 

InfiniBand is about 10%.  

 

Table 3. Exalted Parallel Benchmarks Breakdown.  All values are the percentage of 

the total runtime. 

Benchmark ERI  T1  T2  WRITE  READ  T3+T4  sync   

(1) 38.2  28.9  6.2  0.77  0.37  23.7  1.9   

(2) 39.3  45.5  6.1  0.003  0.7  4.0  4.4   

 

The breakdown of each step in the Taxol/cc-pVDZ and (H2O)19/aug-cc-pVTZ 

calculations is given in Table 4: T1-T4 are the transformation steps and sync is the overall 

synchronization time.  In both cases the integral calculation (ERI) accounts for a 

significant fraction of the total run time. The water cluster calculation has almost all of its 

work concentrated in the integral and first transformation (T1) part due to much less 

screening (because of the diffuse functions in the basis set), as opposed to the sparser 

integral set in the Taxol calculation. In both cases, the total I/O (WRITE and READ) 

accounts for around 1% of the total run time. If the computational power were to 

suddenly increase, the algorithm would still be viable due to the low I/O overhead.  

The next set of benchmarks illustrates the capability of the algorithm on a large cluster, a 

Cray XE6. Two inputs are used, Taxol/aug-cc-pVDZ and Valinomycin/cc-PVTZ.  

The timings are given in Table 4 and the overhead of each step in is given in Table 5. 

When considering the timings given below, is important to keep in mind that the numbers 

are for one thread only and do not give a definitive picture of the entire computer system; 

the other threads across nodes may very well have significantly more or less I/O time. 
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Table 4. Cray Benchmarks. 

Input  Cores/Nodes  Storage Time (mins)
*
 

Taxol/aug-cc-pVDZ 512/16 Lustre 63.9
(1)

  

512/16 DM 52.5
(2)

  

1024/32 DM 25.3
(3)

  

Valinomycin/cc-PVTZ 256/8 Lustre 313.8
(4)

 

512/16 Lustre 204.6
(5)

 

* superscripts 
(1-5)

 refer to computation breakdown, Table 5. 

 

Table 5. Cray Parallel Benchmarks Breakdown.  All values are the percent of total 

runtime. 

Benchmark  Eri  T1  T2  WRITE  READ  T3+T4  sync   

(1)  14.1  52.8  10.0  0.1  3.5  5.5  14.0   

(2)  17.2  53.1  15.4  0.1  0.1  8.1  6.0   

(3)  18.2  40.6  9.9  0.1  0.1  8.4  22.7   

(4)  17.8  16.4  18.0  9.3  17.5  18.2  2.8   

(5)  7.2  20.5  16.3  18.1  7.1  28.3  2.5   

 

The smaller Taxol/aug-cc-pVDZ computation storage is small enough to fit in distributed 

memory (DM). The run with Lustre storage takes longer; this can be expected considering 

that the system has a 64:1 compute to I/O node ratio. When running in distributed 

memory entirely, the I/O overhead is hardly noticeable, due to the fast Gemini 

interconnect. The super-linear speed-up is most likely due to the cache effects of reduced 

memory pressure on individual nodes.  

 

 

The larger computation, Valinomycin/cc-PVTZ, requires 3.3TB, which is beyond the 

aggregate memory of the system.  The half-integral file is stored on the Lustre file 

system, with the striping size set to 32MB.  For this computation the I/O overhead is 

significant, on the order of 25%, again due to more effective integral screening in the 

absence of diffuse functions. The scalability suffers as well, both due to more I/O and an 

unfavorable 64:1 ratio of cores to I/O nodes when running on 512 cores. Nevertheless, 

running the calculation that would otherwise require around 2000 cores just to complete 

the job illustrates the efficacy of the new algorithm with its flexible memory/file system 

storage.  
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7. GPU Implementation 

There is considerable interest in porting core quantum chemistry algorithms to take 

advantage of the graphical processor unit (GPU) architecture. A previous report by the 

authors demonstrated reasonable performance for a GPU C++ Hartree-Fock (HF) code, 

compared to the best C++ CPU code as a benchmark
16

. The speedup of the C++ GPU 

algorithm relative to the standard FORTRAN77 HF code in GAMESS was shown to be 

much better, as one would expect when comparing a modest legacy code to a much newer 

algorithm that takes advantage of modern computer architectures. 

 

With regard to a C++ GPU MP2 code that employs the new algorithm described here, 

consider the following points regarding the innermost MP2 implementation kernels:  

 The integral block evaluated at any given time is relatively small, to keep 

the memory footprint low.  

 The integrals are screened, therefore the coefficient matrix needs to be 

repacked according to the block-sparse structure of the integral block.  

 The first transformation is a series of relatively small matrix-matrix 

multiplications.  

While the CPU can handle the above tasks efficiently, the GPU runtime is inefficient at 

handling many small tasks, rather than a few large tasks. As a result, the GPU is poorly 

utilized, even if one uses multiple streams to run several small kernels simultaneously.  

 

Table 6 presents the GPU speed-ups relative to the C++ CPU times discussed above. All 

benchmarks were carried out on the Exalted nodes.  Even though the GPU times are very 

good relative to the current DDI and IMS algorithms (see Tables 1-3 above), the speed-

ups relative the new C++ CPU code is disappointing for the reasons outlined above. The 

highest performance gain is less than 5%. Although the overall performance of the 

algorithm is superior to the algorithms in the current GAMESS code, this is primarily due 

to the new (better) algorithm implementation, rather than to the raw performance of the 

GPU. 

  

Table 6. GPU.  All times are in minutes. 

Input  Cores/GPUs No GPU time  With GPU time Speed-up
a
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Taxol/6-31G  24/4 3.1  3.4  -8%   

Taxol/6-31G(d)  48/8  5.3  5.4  -2%   

Taxol/cc-PVDZ 60/10 9.5  9.3  +2%  

(H2O)19 60/10 49.9 48.9 +2% 

a. Speedup relative to C++ GPU algorithm. 

 

The only place where GPU math libraries could make a difference is in the last two 

transformations, in which the bulk of the work is handled by two large consecutive matrix 

multiplies. However the last two index transformations do not account for enough of the 

runtime, 30% at most in the above examples. Therefore, speeding up those parts of the 

computations is unlikely to significantly improve the overall performance. 

  

It is important to stress that the above finding does not mean that an efficient MP2 GPU 

algorithm is not possible. However, to achieve good GPU utilization, an approach 

significantly different from that taken in the present work is needed. This is in contrast 

with RI-MP2 GPU implementations
17

, in which the bulk of the work is handled by few 

large matrix multiplies without the need to accommodate the sparse nature of two-

electron integrals directly.  

8. Conclusions 

The work described in this paper offers an improvement over existing MP2 energy 

algorithms, both in terms of execution time and resource utilization. A flexible data 

storage model allows one to transparently use either a file system or distributed memory 

to store partially transformed integrals. A number of sample calculations demonstrate that 

the new approach works well with small clusters and can also scale to a thousand cores on 

a Cray supercomputer. However, translating the new C++ CPU approach into a GPU 

implementation proved to be unsuccessful, since the GPU runtime does not handle the 

workload composed of large number of small computations efficiently.  
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Abstract 

A new coupled cluster singles and doubles with triples correction, CCSD(T), algorithm is 

presented. The new algorithm is implemented in C++, has a low memory footprint, fast 

execution time, low I/O overhead, and a flexible storage backend with the ability to use 

either distributed memory or a file system for storage. The algorithm is demonstrated to 

work well on single workstations, a small cluster, and a high-end Cray computer. With 

the new implementation, a CCSD(T) calculation with several hundred basis functions and 

a few dozen occupied orbitals can run in under a day on a single workstation.  

1. Introduction 

As a rule of thumb, the electronic energy obtained with the Hartree-Fock method 

accounts for ~99 % of the energy. However, many chemical properties of interest are 

dependent on the remaining 1 %, frequently called the electron correlation energy, or 

simply the correlation energy. The correlation energy is defined as the difference between 

the reference Hartree-Fock energy and the true energy,  

 corr hfE E E
                  (1)

 

 

Of the many electron correlation methods [1-3], the coupled cluster (CC) method is one 

of the most successful. The coupled cluster method was first developed by nuclear 

physicists [4], adapted to quantum chemistry by Cizek, Paldus, Shavitt, Mukherjee, 

Schaefer, and others [5-9] and especially popularized by Bartlett [10].  

 

 The iterative singles and doubles coupled cluster (CCSD), plus triples that are included 

perturbatively [11], CCSD(T), method is the most popular approach, often referred to as 

the gold standard of computational chemistry, among the several other higher-order 

methods [12]. 

 

 

The coupled cluster method is usually introduced in the exponential ansatz form [13],  

 1 2( )

0 0
nT T TTe e

      (2)
 

where 
1 nT T  are the n-particle cluster operators and 0  is the reference wavefunction, 
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typically the Hartree-Fock reference 
hf

.  

The excitation operator applied to a reference wavefunction is written in terms of cluster 

excitation amplitudes t  from hole states  i j k  (occupied orbitals in chemistry 

parlance) to particle states (or virtual orbitals),  a b c   

 

  

T
n 0

ijk abc

t
ijk

abc

ijk

abc

         (3)

 

 

Truncating the expansion at doubles, leads to the approximate coupled cluster singles and 

doubles method, CCSD,  

 
  
T T

1
T

2                     (4)
 

The singles a

it  and doubles ab

ijt  amplitudes are found by solving a system of nonlinear 

equations,  

 
  
<

i

a (H
N
e

T
1

T
2 ) > 0

        (5)
 

 

 
  
<

ij

ab (H
N
e

T
1

T
2 ) > 0

       (6) 
 

where , ,a ab

i ij are, respectively, the reference determinant, and the singly and doubly 

excited determinants, and 
 
H

N
H < H > is the normal order Hamiltonian [13], 

constructed so that its reference energy is zero. 

The final algebraic CC equations, derived using a diagrammatic approach, result in a 

number of integral terms V  contracted with T  amplitudes. For example, 2

1VT  signifies 

integral terms contracted with 
a b

i jt t . The complete derivation can be found in a number of 

sources [14]. For the purposes of this work, the spin-free equations by Piecuch and co-

workers [15] are used.  

 

The algebraic CC equations are presented in Einstein summation terminology, in which 

repeated co- and contra-variant indices; e.g., the index s in Xs
rYt

s  or the index r in Xs
rYr

t  

imply summation. For the following discussion, define the one-electron integrals 

 
f

q

p < p f q > , the two-electron molecular integrals | |pq

rsv pqv rs , and the 

many-body denominators ... ...pr q s p

qs q s p

r

rD f f ff for an arbitrary number of 
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orbitals. Now, the CCSD non-linear equations may be expressed as follows: 

 

 
(2 ) (2 ) 

(2 ) (2 )

a a a a e a m ea ea e ma amm
ii i i e i m e mi im m ei ei

mn ea ae ma ef ef

ei mn mn ef mi im

D t f I t I t I t t t v v

v t t v t t
 (7) 

 

 

1 1
( )[

2 2

(2 ) ]  

ab ab ae b ab m ab ef ab mn

ij ij ij e im j ef ij mn ij

ae mb ma eb ea ea mb e aab mb
ej ijmj ie ie mj mi im ej i m

ab

ijD t v P ia jb t I t I v c c I

t I I t t t I t I t I

 (8) 

 

In Eqs. (7) and (8), the intermediates , , 'c I I  are defined as 

 

 
  
I

a

i f
a

i 2v
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e v
ea
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e  (9) 
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a f
b

m  (10) 

 

 i i ei
jj e jI I tI  (11) 

 

 (1 ) (2 ) (2 )i i im e im e mi ef im efi
j j j je m ej m ef mj ef mjf v t v t v t v tI  (12) 

 

 ( )ij ij ij ef e ij

kl kl ef kl k elI v v c P ik jl t v  (13) 
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ij i j ij

ab a b abt tc t
 

 

In the foregoing, the permutation operator P ,  

 
  
P(ia jb)u

ab

ij u
ab

ij u
ba

ji

 (17)   

has the effect of symmetrizing an arbitrary operand u , such that,  

 
  
P(ia jb)u

ab

ij P(ia jb)u
ba

ji

 (18)
 

The integrals over molecular orbitals are obtained from the integrals over the atomic 

orbital (AO) basis via the 4-index transformation,  

 
  
v

cd

ab C
p

aC
r

bC
c

qC
d

s < pq
1

r
rs >

 (19)
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The coefficients C in Eq. (19) are obtained from the iterative Hartree-Fock procedure. 

The transformed integrals have the following general symmetries,  

 
bs as

ar br
v v  

 

 qs sq

ab bav v  

 

The (T) correction is given as: 

 
  
E[T ]

abc

ijk
t t

ijk

abcD
ijk

abc  (20) 

 
  
E(T ) E[T ] t

ijk

abcD
ijk

abc

abc

ijk
z  (21) 

An arbitrary quantity ijk
abcx is defined as 

 
  

abc

ijk
x

4

3
x

abc

ijk 2x
acb

ijk 2

3
x

bca

ijk

 (22)
 

and 

 ( )ijk i jk j ik k ij abc

abc a bc b ac c a ijkz t v t v t v b D
 (23)

 

The 3T  amplitudes are,  

 ( )[ ]abc abc ae bc ab mc

ijk ijk ij ek im jkD t P ia jb kc t v t v  (24) 

where the symmetrizer ( )P ia jb kc is 

 
  
P(ia jb kc)u

abc

ijk u
abc

ijk u
acb

ikj u
bac

jik u
bca

jki u
cba

kji u
cab

kij  

 

2. Computational details 

The CCSD equations are non-linear and must be solved to self-consistency via an 

iterative procedure, usually with the help of an acceleration method [16]. The CCSD 

method is dominated by its most expensive term, ab ef

ef ijv c , which scales as 4 2v o , where v, o 

are the number of virtual and occupied molecular orbitals, respectively. Formally, the 

method is expensive in terms of memory and storage as well, with amplitude storage on 

the order of 2 2v o  and integral storage on the order of   v
4 v3o  and so on. The amount of 

in-core memory depends on the specific algorithm used; most algorithms require 2 2v o  

storage per node. This amount of memory is not scalable. For example, a problem with 

100 occupied and 1000 virtual orbitals would require 80GB of memory per node, which 
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is not commonly available.  

 

The non-iterative (T) correction requires 3v o  storage and scales as 4 3v o . A naive (T) 

algorithm is trivial to implement but an algorithm that has a small memory requirement 

and scalable I/O is more challenging. 

  

There is a CCSD(T) method in nearly every quantum chemistry package. The ACES [17] 

and NWChem [18] implementations can handle very large computations, provided that a 

supercomputer is available [19].  The MOLPRO [20] algorithm has an 2 2o v  memory 

requirement, which limits its utility, but it is perhaps the fastest algorithm for smaller 

calculations.  The GAMESS [21] implementation runs in parallel but is similarly limited 

by an 2 2o v  memory requirement. The Janowski, Ford, Pulay disk array CC 

implementation [22] can handle large computations of the order of a thousand basis 

functions on a commodity cluster by utilizing a filesystem for storage, but the 

performance of their algorithm is limited by disk I/O. 

3. Design of a Scalable and Efficient Algorithm 

In a previous paper, an MP2 energy algorithm was discussed [23], which has a small 

memory footprint, good performance, a flexible storage implementation, and is able to 

run on workstations and clusters equally well. In the same spirit, a coupled cluster 

algorithm can be designed, such that it is efficient, has a small memory footprint, is able 

to utilize a filesystem and memory for storage, and as a result can run on machines with 

very different capabilities.  

For coupled cluster algorithms (and other many-body methods), it is the memory that is 

most likely to limit the application of the algorithm. Memory is a limited resource, unlike 

the time. Furthermore, the time to completion for calculations can be decreased by 

providing more computational hardware, whereas the amount of physical memory per 

node cannot be increased by adding another node.  

Some very large arrays can (and need to) be distributed across the nodes (distributed 

memory) or stored on the filesystem. Disks are inexpensive and offer terabytes of storage, 

but filesystem I/O can be very slow if not done right. Nevertheless, a considerable amount 

of memory must be present to carry out local calculations.  
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What are the memory limitations of current hardware? A “typical” workstation or a 

cluster node in most research groups has between 1GB and 8GB of memory per core, 

with 2GB of RAM probably the most common. For an entire node, the amount of 

memory can be as much as 64GB or more, depending on the number of cores/node. That 

number will increase in the future, but possibly at a slower rate than the increase in 

computational power.  

 

To draw a connection between memory and the dimensions present in CC calculations, 

several generic arrays of varying dimensions, corresponding to 100 occupied orbitals and 

1000 and 2000 basis functions, are listed in Table 1.  The dimensions of these arrays may 

correspond, for example, to an entire integral array or to the first three indices.  The 

algorithm design is then guided by what arrays are small enough to be stored per node or 

per core.  It should be kept in mind that the sizes listed are not for the entire calculation, 

but for one of the several arrays needed. Some of the arrays can be shared, but some must 

be allocated per thread/core.  

Storing an
2 2o n  array per node (let alone per core) is too expensive: A node with 80GB of 

RAM is rare and one with 320GB is even more rare. The same is true for the quartic 

arrays other than 4o  and arrays involving an 2n  factor. Storing, for example, several 3GB 

arrays would preclude most systems from being able to handle more than a thousand basis 

functions. The choice is then to restrict memory requirements to 2o n  (or smaller) arrays, 

whose size only increases linearly with basis set. Trying to limit memory further than 

2o n, to say on , will come at a very high cost of increased I/O.  
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Table 1. Array Sizes for o=100 

 

Array  Size (GB), nbasis=1000  Size (GB), nbasis=2000   
4o   0.8  0.8   

2o n  0.08  0.16   

2on   0.8  3.2   

3o n   8.0  16.0   
3n   8.0  64.0   

2 2o n   80.0  320.0   
3on   800.0  6400.0   

4n   8000.0  128000.0   

 

Some arrays, notably 4n , are too great to store even in secondary storage. The terms 

involving such an array must be evaluated directly, i.e. on the fly, at the modest cost of 

recomputing atomic integrals, cf. Olson et al [24]. However, to push the ability of the 

algorithm beyond a thousand basis functions, 3on  storage also must be eliminated in the 

CCSD algorithm. To ensure that I/O overhead is low even on filesystems, transfers to and 

from secondary storage must be contiguous and in large chunks. There are three basic 

remote operations: put, get, accumulate. The last of these cannot be 

implemented efficiently via the filesystem I/O and the algorithm must not rely on it.  

Finally, to achieve computational efficiency, all of the expensive tensor contractions that 

must be carried out using dgemm and tensor permutations must not exceed two adjacent 

indices to ensure data locality, e.g., A(j,i,k) = A(i,j,k) is OK, but A(k,j,i) = A(i,j,k) is not, 

because the latter has poor memory performance. The work distribution between the 

nodes must be over the virtual index rather than the (usually) much smaller occupied 

index, to ensure that the algorithm can scale to hundreds of nodes. The work within the 

node can be parallelized using threads. This multi-level parallelization guarantees that the 

algorithm will scale to thousands of cores.  

In the following discussion, the primary focus is on memory, then on secondary storage 

and I/O, and only then on the computational aspect. The consequent performance is 

illustrated below with benchmarks.  
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4. Implementation 

This section is broken into three sub-sections that address the direct CCSD terms, the 

non-direct CCSD terms, and the triples correction, respectively. The CCSD component of 

the CCSD(T) algorithm is by far the most complex due to the number of terms.  

 

Before proceeding to the respective sections, consider I/O optimization via loop blocking. 

In Algorithm 1, B  is a blocking factor. If 1B , then it is just a regular loop: the 

innermost (most expensive) load operation is executed 3N  times, the total I/O overhead is 

2 3M N , and the local buffer size is 2M . If B  is greater than 1, the innermost load 

operation is called 3( )N B  times, the I/O overhead is 2 3 2 3 2( )M B N B M N B , and the 

local buffer size is 
2M B . So, at the cost of increasing the local buffer size, the I/O 

overhead can be reduced by a factor of 
2B . In general, loop blocking decreases I/O by 

( 1)LB  where L  is the number of nested loops. 

 

The loop blocking will be used where I/O might pose a problem. Since blocking also 

requires an increase in memory overhead, the blocking factor can be determined by 

setting a runtime memory limit.  

 

 
for i = 0:N,B { // iterate to N in steps of B 
  for j = 0:N,B { 
    for k = 0:N,B { 

      // the innermost load operation 
      buffer(M,M,B) = load A(M,M,k:k+B) 
      ... 
    } 

  } 
} 

   

Algorithm 1. Loop Blocking 

 

4.1. Direct Terms 

As mentioned already, ab

cdv  has to be evaluated directly due to storage constraints. The 

same approach can be extended to evaluate terms ia

bcv  directly as well at little additional 

cost.  

To make the notation simpler, the conventional VT  notation is used, where the general 
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single and double amplitudes contractions are referred to as 2

21 1,,V VT VTT , the latter 

implying contraction with two single amplitudes. 

 

The integral ab

cdv  is contracted with 
  ij

cd

T
1

2 (T
1
T

1
)

ij

cd t
i

ct
j

d  and 
2

cd cd

ijij
tT  amplitudes, 

 

 2

ab cd s q pr b a

ij d c qs r pij
t C C V C CVT  (25) 

 

 2

1

ab c d s q pr b a

i j d c qs r pij
t t C C V C CVT  (26) 

 

Half-transforming the amplitudes to the AO basis and factoring out half-contracted terms 

yields expressions in terms of half-transformed intermediates U , with subscripts referring 

to the T  contraction (Recall that p,q,r,s are AO indices.).  

 

 2
( )

pr cd s q pr

ij d c qsij
t C C VU  (27) 

 

 2

1
( )( )

pr c q d s pr

i c j d qsij
t C t C VU  (28) 

 

 2 2

ab pr b a

r pij ij
C CVT U  (29) 

 

 2 2

1 1

ab pr b a

r pij ij
C CVT U  (30) 

 

All similar VT  terms can be obtained from U  at virtually no cost by having the last two 

AO indices transformed to occupied and virtual indices. For example, the ia

bcv  terms in 

Equation (7) are just  

 (2 ) 2ma ef ef qs m a qs m a

ef mi im mi q s im q sv t t U C C U C C
 (31)

 

 

The ia

bcv  also enter the 1VT  diagrams,  

 
  ab

ij
VT

1
t
i

cC
j

sC
c

qV
qs

prC
r

bC
p

a  (32) 

 

 
  jb

ia
VT

1
t
i

cC
d

sC
j

qV
qs

prC
r

bC
p

a
 (33)

 
 

and two more intermediates are needed,  

 

 
  qs

ij
U

1
(t

a

iC
p

a )C
r

jV
qs

pr
 (34) 

 

 
  js

ir
U

1
(t

a

iC
p

a )C
j

qV
qs

pr
 (35) 

which can then be transformed into appropriate 1VT  diagrams.  
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Now, if all four U  intermediates are available, neither ab

cdv  nor ia

bcv  need to be stored for 

the CCSD iterations; they can be replaced with much smaller 
2 24 o n  storage.  

Half-transformed 
2T  amplitudes, Eq. (27), also provide a way to devise a direct 

contraction algorithm with very little memory requirement. Since the contraction is in the 

AO basis, atomic indices can be contracted without having to construct ab

qsV  which would 

require all atomic basis p r  indices and thus 2 2N M  memory, where M  is the size of the 

largest shell. Algorithm 2 only needs 3NM  memory. 

 

 

 
for S in Shells { 

  for Q ≤ S { 
    for R in Shells { 
      for P in Shells { 

        // skip insignificant ints 
        if (!screen(P,Q,R,S)) continue; 

        // evaluate 2-e integrals(PQ|RS) 
        G(P,R,Q,S) = eri(P,Q,R,S); 

      } 
      for r in R { 
        U1(i,j,q,s) = ... 

        U12(i,j,q,s) = ... 
        load t(o,o,n,r) 
        U2(i,j,q,s) += t(i,j,p,r)*G(p,r,q,s) 
      } 

    } 
    store U1(i,j,Q,S), U1(j,i,S,Q) 
    store U12(i,j,Q,S), U12(j,i,S,Q) 
    store U2(i,j,Q,S), U2(j,i,S,Q) 

  } 
} 

   

Algorithm 2. Direct CCSD intermediates 

 

The important points of Algorithm 2 are: 

 The integral symmetry is exploited to halve the number of integral 

calculations and transformations.  

 The loop over Q S  can be distributed over nodes.  

 The loop over R  can be parallelized over threads. In this case, the U  

storage can be shared, provided the updates to shared memory are synchronized.  
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 The innermost 2t  loads can be reduced by blocking the Q S  loops (cf. the 

discussion on loop blocking). 

 Per thread storage is 3NM , which is 16MB for a basis set of size 2000 

with f  shells (  M 10 ). The local U  storage is likewise small, only 8MB for 

  o 100 . This tiny memory footprint allows for a very large Q S  blocking factor 

and consequently the I/O can be dramatically reduced.  

Note that both 
1UT  terms cannot be evaluated simultaneously using the above algorithm, 

as they correspond to two different integrals, < pq rs >  and < pr qs >. However, one 

of them can easily be evaluated by applying the algorithm a second time to compute a 

single 
1UT  term at a very modest 4on  computational cost.  

4.2. CCSD 

Because the singles amplitudes storage is negligible, on , the singles part of the CCSD 

code is easy to implement and parallelize. By making a virtual index the outermost index, 

the local memory is guaranteed not to exceed 2o n since all of the diagrams with three and 

four virtual indices have already been evaluated above.  

The doubles amplitudes calculation requires the most effort to implement, primarily due 

to the number of contractions and the terms that require significant I/O. Recall that all ab

cdv  

and ia

bcv  terms have been evaluated, as have many similar VT  terms.  

 

The first step towards deriving a scalable algorithm for ij

abDt  (See Eq. (8)) is to fix the 

outermost loop at the outermost virtual index b, since the b index can be evaluated across 

nodes independently. For each b iteration an 2o n ij

abDt  block is evaluated and stored.  

 

The quantities with a b  index are loaded once, guaranteed not to exceed size 2o n . The 

tensors without a b  index imply that the tensor is needed in its entirety for each b  

iteration.  To ensure that no v  or t  memory exceeds 2o n, those tensors without a b  index 

must be loaded into memory 2o n tiles at a time for each b  index inside a loop over a 

dummy virtual orbital index,u . This increases the I/O cost to 2 2o n per b index, or 2 3o n  

overall, which is still below the 3 3o n  computational cost. 
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There are three tensors that must be contracted fully for a given b  index: 
 
v

ia

jb v
ij

ab t
ij

ab . The 

loop corresponding to jb

iav  can be eliminated right away, it is only needed in its entirety to 

evaluate ma eb

ie mjI t  in Eq. (8). Since, this term appears inside the symmetrizer P ,  

 
  
P(v

je

mbt
mi

ea ) P(v
ie

mat
mj

eb)  

ma

ieI  can be replaced by an equivalent mb

jeI . This leads to Algorithm 3.  

 

 
for b in v { // loop over virtual b 

index 
  Dt(i,j,a) = 0 

 
  load t(o,o,v,b) 

  load V(o,o,v,b) 
  load V(o,v,o,b) 
  load V(o,o,o,b) 

 
  Dt += Vt 

 
  // terms with t 
  for u in v { 
    load t'(o,o,v,u) 

    // evaluate terms with t' 
    Dt += Vt' 
  } 

 
  // terms with v 

  for u in v { 
    load v'(o,o,v,u) 
    // evaluate terms with v' 

    Dt += V't 
  } 

 
  store Dt(o,o,v,b) 
} 

   

Algorithm 3. CCSD 

 

The important points about Algorithm 3:  

 The loop over the b  index is easy to make parallel.  

 The local memory is on the order 24o n plus 2o n  per innermost v t  
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temporary storage, corresponding to loading all of the ab ab

ij ijv t quantities, one 

virtual index at a time. 

 The b  loop can be easily blocked to reduce the I/O by a blocking factor B  

at the expense of increasing the memory by a factor of B . . 

 Since the memory footprint is low, B can be fairly large. For example, for 

O=100, V=2000, B=4 and B=8, the required memory is 2.6 GB and 5.2 GB per 

node, respectively.  

 The operations outside the u  loop can be parallelized inside the node by 

using a threaded math library.  

 The operations inside the u  loop can be explicitly parallelized inside the 

node via threads, with the added benefit of overlapping I/O and computations. 

4.3. (T) 

The ( )T  correction, Eq. (14), only involves ij

abt , ij

kav , ij

abv , and ia

bcv . The unused CCSD 

arrays previously allocated can be freed to make space for ia

bcv . Since ia

bcv  was never 

constructed, another integral transformation needs to be carried out at a small 4on  cost.  

 

The Piecuch (T) correction [15] equations were given in a way that requires keeping an 

occupied index fixed and permuting the virtual index. In other words the local memory 

required for ijk

abct  would have been 3v . Since the triples amplitudes are symmetric with 

respect to the exchange of index “columns”,  

 
ijk jik ikj

abc bac acbt t t  

all terms with jik

bact  can be written with the virtual index fixed, e.g., 
 
t
bac

ijk t
abc

jik , 
 
t
cab

ijk t
abc

jki , 

etc.  

Now the 3T  amplitudes can be implemented as a series of 12 dgemms and 6 index 

permutations, as illustrated in Algorithm 4. The important points about Algorithm 4 are:  

 The symmetry in a b c  indices is utilized.  

 The loop over a b c  indices is easily parallelizable.  

 Only the loads with an a  index are innermost  

 The loops can be easily blocked to reduce the I/O by a factor of 
2B  where 
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B is the blocking factor.  

 The local storage required is 2 3 2 3 33 3 6o vB o B ovB o B   

 If 1B , the actual dgemms are carried out inside another 
3B  loop, which 

can be parallelized within a node by using threads.  

 Since the memory footprint is low, the blocking factor can be large. For 

example, for O=100, V=1000, B=4 and B=8, the required memory is 1.6G and 

6.4G per node respectively.  

 

 

 
for c in V { 

  for b in c { 
    for a in b { 

 
      load t(o,o,a,b) 
      load t(o,o,a,c) 

      load t(o,o,b,c) 

 
      load v(o,o,o,a) 
      load v(o,o,o,b) 

      load v(o,o,o,c) 

 
      load v(o,o,v,a) 
      load v(o,o,v,b) 
      load v(o,o,v,c) 

 
      load v(o,v,b,c) 
      load v(o,v,c,b) 
      load v(o,v,a,c) 
      load v(o,v,c,a) 

      load v(o,v,a,b) 
      load v(o,v,b,a) 

 
      // t(i,j,e,a)*V(e,k,b,c) corresponds to 

      // dgemm(t(ij,e), V(e,k)), etc 
      t(i,j,k) = t(i,j,e,a) V(e,k,b,c) - t(i,m,a,b) V(j,k,m,c) 
      t(i,k,j) = t(i,k,e,a) V(e,j,c,b) - t(i,m,a,c) V(k,j,m,b) 
      t(k,i,j) = t(k,i,e,c) V(e,j,a,b) - t(k,m,c,a) V(i,j,m,b) 

      t(k,j,i) = t(k,j,e,c) V(e,i,b,a) - t(k,m,c,b) V(j,i,m,a) 
      t(j,k,i) = t(j,k,e,b) V(e,i,a,c) - t(j,m,b,c) V(k,i,m,a) 
      t(j,i,k) = t(j,i,e,b) V(e,k,c,a) - t(j,m,b,a) V(i,k,m,c) 

      ... 
    } 
  } 
} 
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Algorithm 4. (T) 

 

4.4. The overall picture. 

The algorithm is implemented entirely in C++, as a part of stand-alone library 

(LIBCCHEM) which includes previously reported ERI (electron repulsion integrals), 

Fock, and MP2 methods [23,25,26]. The library requires only minimal input from the 

host program and can be connected to a variety of packages. 

The storage is implemented using Global Arrays (GA) [27] for distributed memory 

and HDF5 [28] for file storage, since the GAMESS distributed memory interface (DDI) 

[29] does not currently support arrays of more than 2 dimensions. The arrays are first 

allocated in faster GA memory until the limit is reached, and then on the filesystem. The 

arrays responsible for the most I/O need to be allocated first to ensure that they reside in 

distributed memory.  

The overall algorithm may be outlined as follows:  

 The CCSD arrays are allocated, with t  and 
ab

ijv  first to ensure that these 

arrays are in fast storage. Overall, storage is needed for t , 
ab

ijv , ka

ijv , jb

iav , kl

ijv , 

Dt and four U intermediates   

 The allocated arrays are evaluated using the regular 4-index 

transformation.  

 The initial 2T  amplitudes are taken to be the MP2 amplitudes, 
ab ab

ij ijv D , 

and the 1T  amplitudes are set to zero.  

 The intermediate U  storage is allocated.  

 The CCSD equations are repeated until an acceptable threshold is reached, 

either the energy difference or the amplitude difference.  

 The CCSD step is optionally accelerated using DIIS [16].  

 Once converged, all but the first three arrays are freed and bc

iav  array is 

allocated and evaluated.  

 The non-iterative (T) method is performed.  
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5. Performance 

To assess the performance and applicability of the algorithm, three scenarios are 

considered here: single node performance, performance on a cluster of modest size, and 

high-end cluster performance. The inputs are selected to reflect a range of basis functions 

and occupied orbitals.  

 

The modest cluster, Exalted, is composed of nodes connected by InfiniBand. Each node 

has one Intel X5550 2.66GHz 6-core processor, 24GB of RAM, two local disk drives, and 

an NVIDIA Fermi C2050 GPU card.  

 

First, consider the ability of the algorithm to run on a single node and to use a filesystem 

in case not enough memory is available to store all data, Table 2.  As can be seen, even on 

a single node, fairly large CCSD(T) jobs can still run in a reasonable timeframe (i.e., less 

than a week).  Despite falling back to disk in all cases, across the board the I/O time as a 

fraction of total time is very small, below 5%.  

Table 2. Exalted Single Node Performance. 

 

Input  #AO/Occ
1
  CCSD

2
  (T)  (T) 

Mem/Disk
3
  

(T) I/O   

C4N3H5/aug-ccPVTZ  565/21  42m  8h  2.1/19.5 GB  13m   

C8H10N4O2/aug-ccPVDZ  440/37  50m  17h  5.5/17.0 GB  13m   

SiH4B2H6/aug-ccPVQZ  875/16  141m  18h  3.4/53.4 GB  49m   

C8H10N4O2/ccPVTZ  640/37  180m  64h  12.2/49.0 GB  42m   
* 
m refers to minutes, h refers to hours 

1 
Number of atomic/occupied orbitals 

2
 single CCSD iteration time 

3
 Memory/Disk used to evaluate (T) 

 

The cluster performance is assessed on the basis of the time larger jobs take to run, Table 

2, and the scalability of a medium-size job, Table 3. First, all of the inputs used for single 

node benchmarking can run in under a day on the cluster. Secondly, a large CCSD 

Tamoxifen calculation, C26H29NO, can run on this relatively small (Exalted) cluster, 

three hours per iteration.  

 

As expected, the (T) algorithm scales well, as shown in Table 4, since it is very easy to 

parallelize to a large number of nodes. However, the scalability of the CCSD algorithm is 
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not perfect. This is especially noticable when running on a large cluster, such as the Cray 

XE6 system, which has thousands of cores the two 16-core AMD Bulldozer nodes, with 

64GB of RAM, connected by a fast network.  The performance gain from increasing the 

number of nodes, Table 5, is below linear scaling, but the longer Tamoxifen calculation 

scales reasonably well to 1024 cores, reducing the runtime by a factor of 3.3 relative to 

the 256 core run.  

 

Each XE6 node has two chips, 16 cores each. The benchmarks in Table 5 were obtained 

running 32 threads over the entire node created from a single MPI process. The better 

option, especially in the case of (T) is to run one MPI process per chip rather than per 

node, as illustrated in Table 6. If each MPI process runs (and creates threads) within a 

single chip only, the threads do not need to communicate over the slower bridge 

connecting two chips. Generally, there is a large penalty for sharing data across the chips, 

which must be avoided by having a flexible approach to launch jobs.  

Table 3. Exalted Cluster Performance. All times are in minutes. 

 

Input  #AO/Occ
1
  # cores  CCSD

2
  (T)   

C4N3H5/aug-ccPVTZ  565/21  24  12  61   

SiH4B2H6/aug-ccPVQZ  875/16  48  20  133   

C8H10N4O2/ccPVTZ  640/37  48  26  482   

C26H29NO/aug-ccPVQZ  961/71  96  211  N/A
3
   

1 
Number of atomic/occupied orbitals 

2
 single CCSD iteration time 

3
 Job requires 0.5TB of storage:  Exalted does not have sufficient memory or parallel FS. 

 

Table 4. Exalted Cluster Scaling, C8H10N4O2/cc-PVTZ. All times are in minutes. 

 

Cores/Nodes  CCSD
1
  (T)   

24/4  28  971   

48/8  15  482   

96/16  11  240   
1
single iteration time 

 

Table 5. Cray XE6 CCSD Performance. All times are in minutes per single iteration. 

 

# cores  256 cores  512 cores 1024 cores  

SiH4B2H6 (T)/aug-ccPVQZ  130  76  42   

C8H10N4O2 CCSD/ccPVTZ  15  9  6   

C26H29NO CCSD/aug-ccPVQZ  253  134  76   
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Table 6. Cray XE6 Intra-Node Configuration, SiH4B2H6 (T)/aug-ccPVQZ. All times 

are in minutes. 

 

# cores  32x1 Threads/MPI  16x2 Threads/MPI   

256  130  101   

512  76  49   

1024  42  27   

 

4.1. GPU CCSD Performance 

As expected, the direct terms account for the most time in CCSD iterations. In the present 

implementation most of that work is concentrated in a continuous application of just one 

dgemm operation. Adding a graphical processor (GPU) dgemm to handle matrix 

multiplication, while keeping the integral evaluation on the host, is fairly easy. In a 

multithreaded environment, several threads must be assigned to a GPU device to avoid 

work imbalance. 

Augmented with GPU BLAS, via CUBLAS [30], the CCSD calculations on a single 

exalted node get a noticeable speed up, shown in Table 7, if the direct term (See Section 

4.1) dominates the entire iteration (this is the case if the number of occupied orbitals is 

very small relative to the size of the basis set). If the number of occupied orbitals is 

relatively high, the direct term accounts for a smaller fraction of the total iteration time, 

and consequently the GPU benefit is less noticeable overall.  At the time, the (T) GPU 

implementation is not complete. 

 

Table 7. Exalted Single Node+GPU CCSD performance.  All times are in minutes 

per iteration. 

 

Input  C8H10N4O2/ccPVTZ  SiH4B2H6/aug-ccPVQZ  C4N3H5/aug-ccPVTZ   

Direct  124  131  36   

Direct+GPU
1
  53  65  26   

CCSD  163  142  42   

CCSD+GPU
1
  115  75  33   

CCSD Speed-up
2
  1.4x  1.9X  1.3X   

1 
GPU enabled 

2 
Overall CCSD speed-up relative to CPU code 
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5. Conclusions 

The algorithm presented in this paper is able to handle fairly large jobs on a single node, a 

small cluster, and high-end Cray system. The algorithm has a small adjustable memory 

footprint and is able to optionally use the filesystem if the data exceeds distributed 

memory storage. The algorithm can also optionally use GPUs to speed up certain CCSD 

computations. When running on the multi-core node with multiple processor packages 

(chips), the algorithm benefits from limiting thread communication to within a chip.  

The algorithm is implemented entirely in C++, as a part of stand-alone library which 

includes previously reported ERI, Fock, and MP2 methods. [18,19].  
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Chapter 5.  Conclusions 

 

As the computing technology changes and matures, scientific computing must 

follow. 

Hardware and software that was cutting edge in the 70's and 80's still dictates how many 

of the computational chemistry packages are implemented today. However, computing 

technology evolved very quickly since the introduction of Fortran 77.   Object oriented 

programming (OOP), generic programming, standard libraries, and system standards have 

become the essential pieces of most modern commercial and open-source software, small 

and large alike. To keep up with the improvements in computer science, computational 

chemistry algorithms must be either modernized or rewritten. Often, due to software 

architecture decisions made decades ago, rewriting is the only viable plan for the future. 

Not all of the software needs to be modernized at once: the key pieces such as integral 

and Hartree-Fock methods can be rewritten alone and integrated into the existing 

software, one at a time. 

 

Software modernization also presents an opportunity to improve the existing 

algorithms, separate them into modular libraries to encourage reuse among the scientists, 

and to plan ahead, given the trends in computing over the last few decades. 

 

The first algorithm presented was for the Hartree-Fock method, the reference 

method in the most electron correlation theories.  The Hartree-Fock method requires 



www.manaraa.com

88 

 

 

 

evaluation of the two-electron integrals, which constitutes the most consuming part. 

Unlike other pieces in computational chemistry, two-electron integral methods are 

specific to the domain and do not receive much attention from outside the field. In the 

present work the integrals were implemented using the Rys Quadrature approach, one of 

several integral methods. While algorithmically more complex than other methods, the 

Rys Quadrature method is a general numerically stable method with low memory 

footprint, which makes it suitable for implementation on graphical processing units 

(GPU). 

 

Once the integral engine was implemented, the multithreaded Hartree-Fock 

method naturally followed. The integral and Hartree-Fock GPU implementation was able 

to reuse many key pieces of the CPU algorithm, designed to be fast, extensible, and 

flexible through the use of a code generator and C++ templates. 

 

One of the most common electron correlation methods is second order many-body 

perturbation theory (MBPT2), also known as Moller-Plesset second order perturbation 

theory (MP2). Unlike higher-order treatments, MP2 is a relatively inexpensive black-box 

method which makes it very popular. Hence, the Hartree-Fock implementation was 

followed by an implementation of the MP2 method. Like the Hartree-Fock method, the 

MP2 implementation relies heavily on fast integrals. But unlike Hartree-Fock, most of 

computational work is handled by the de facto standard basic linear algebra subroutines, 

BLAS. The MP2 algorithm implemented is a semi-direct method, meaning that the 

partially transformed integrals need to be stored in secondary storage, such as disk or 

distributed memory. Unlike the other MP2 algorithms, which are based on either disk or 

distributed memory, the implemented algorithm uses Object Oriented Programming 

(OOP) features of C++ to provide transparent integral storage on either disk or in 

distributed memory. 

 

The natural follow-up to MP2 is coupled cluster (CC) theory. The coupled cluster 

method, truncated at singles and doubles excitations, CCSD, with a perturbative triples 

correction (T) leads to the CCSD(T) method, often called the gold standard of 

computational chemistry due its accuracy. CCSD(T) is very expensive method, both in 

terms of computer time and memory. However, with the lessons learned designing the 
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MP2 algorithm, a fast 

CCSD(T) algorithm was developed such that it could run on both a single workstation 

and supercomputers. The key to the implementation was optimizing the algorithm in 

terms of memory first, I/O overhead second, and concentrating on the computational 

efficiency last. 

By using several properties of atomic to molecular basis transformations, several 

expensive computation and storage requirements were eliminated from the CCSD 

algorithm. And by using the well-known loop optimization technique called blocking, the 

(T) algorithm was implemented with very little memory requirement and very little I/O 

overhead. 

 

The three algorithms summarized above were prompted by the need to 

accommodate the wide array of computational hardware. In the process, the algorithms 

were improved, often drastically. Implemented in C++, the algorithms and the supporting 

framework were built as a stand-alone library, with Fortran bindings. Connected to 

GAMESS, the library was successively integrated with the existing legacy code. While 

not explicitly discussed, the supporting framework, such as basis set and wavefunction 

objects, is absolutely necessary to develop robust flexible modern code. 
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